Diversity and distribution of lichens on some major monuments of Madhya Pradesh, India

Rajesh Bajpai*, Dalip Kumar Upreti, Shiv Kumar Dwivedi*

Lichenology Laboratory, National Botanical Research Institute, (CSIR) Lucknow-226 001, India *Department of Environmental Sciences, B. B. A. University, Lucknow-226 025, India

Bajpai R, Upreti DK & Dwivedi SK, 2008. Diversity and distribution of lichens on some major monuments of Madhya Pradesh, India. Geophytology 37: 23-29.

The paper deals with the occurence of 95 species of lichens belonging to 33 genera, 16 families and 1 genus to class Imperfectii growing on some major monuments of Madhya Pradesh. The members of the lichen family Physciaceae dominate the monuments as represented by 24 species, followed by members of Teloschistacese and Verrucariaceae. The crustose form of lichens exhibit their luxuriant growth, followed by squamulose and leprose forms on various monuments. Out of the different substrates the sandstone bears the maximum diversity of lichens represented by 50 species, followed by siliceous, bauxite and calcareous substrates represented by 33, 5 and 4 species, respectively. Observation of the damage caused by the metal complexing activity of some common lichen products is also discussed.

Key- words-Lichen distribution, Monuments, Biodeterioration, Madhya Pradesh.

INTRODUCTION

LICHENS have ability to grow on a variety of substrates under a wide range of environmental conditions. They play an important role in process of pedogenesis due to geophysical and geochemical weathering. Lichens are the first living things to occupy newly exposed rock surface (Chen et al., 2000). A large number of biodeterioration studies of lichens from different European countries are available (Ascaso et al., 1976, Bech-Anderson & Christensen 1983, Danin et al., 1983, Jones & Wilson 1985, Saiz- Jimenez 1981). Recently, Piervittori et al., (2004) listed more than 600 references on lichens and monuments all over the world. However, in Indian context only a few studies on the lichens growing on different monuments of the country are available. Chatterjee et al., (1995) listed the lichens from some monuments of Karnataka and Orissa. Singh and Upreti (1991) studied the lichen flora of Lucknow with special reference to its historical monuments. Upreti (2002) recorded 14 lichen species growing on the Khajuraho temple and nearby area. Ayub (2005) and Bajpai (2007) listed lichens growing on some major monuments of Uttar Pradesh and rock shelters of Bhimbetka World Heritage zone, Madhya Pradesh, respectively.

Madhya Pradesh is one of the culturally rich states of India, bestowed with three world heritage zones and more than 600 ancient monuments, of which, 50 are protected. Most of the monuments in the state are constructed of either coarse granite, sandstone or bricks (Lakhori) and plastered with lime plaster or cement, which provide an excellent substrate for a large number of lichens to colonize together with other groups of plants. The calcicolous (lime loving) lichens which prefer to grow mostly on monuments and historical buildings are unique as they have an in-built tolerance against the effect of acidic gases present in the atmosphere. Except a few biodeterioration studies on monuments of Madhya Pradesh, a large number of monuments of this state are not explored for their lichen diversity. Thus, in the present study an attempt has been made to assess the diversity of lichens colonizing on monuments of Madhya Pradesh and their biodeterioration effect on them.

MATERIAL AND METHODS

The study is based on the collection of lichens from more than 30 monuments situated in seven districts of Madhya Pradesh (Table-1). More than 500 lichen specimens were collected directly from abandoned monuments or nearby area of the monuments during January 2007. As most of the monuments are protected, and looked after by the Archaeological Survey of India (ASI), it was not possible to collect the lichen samples directly from the monuments. To

Table 1-Localities surveyed for collection of lichens.

S. No.	District	Monuments					
1	Anoopur	Patleshwer temple, Jwaleshwar temple, Kapildhara, Kabirchabutra					
2	Dhar	Dhar fort, Lat ki masjid, Bhoj shala, Lal mahal, Bhangi gate, Jali mahal, Alamgir gate, Jami masjid, Delhi gate, Jahagir mahal, Sun set point, Lohani cave, Rani roopmati mahal, Chistikhan mahal.					
3	Dindori	Khurkhuri dader, Near Kabir					
4	Hosangabad	Jatashankar temple, Apsarabihar, Chote mahadev, Pandav cave, Down fall.					
5	Jabalpur	Madan mahal, Karia pathar					
6	Raisen	Rang mahal, Main cave of Bhimbetka, Jamunjhin, Lakhajwar.					
7	Tikamgarh	Sheesh mahal, Jehangir mahal.					

avoid the destruction of protected monuments, lichen samples from the abandoned monuments, or nearby rocks were selected for collection. Lichen specimens collected from nearby rocks of the monuments in the past and preserved in the herbarium of National Botanical Research Institute, Lucknow (LWG) were also included for this study.

Morphology of the lichen specimens was studied using stereozoom binocular microscope. The anatomical details of thallus and fruiting bodies were studied in free hand sections mounted in water under compound microscope. Chemistry of the specimens was studied following Walker and James (1980). The colour spot tests were carried out on cortex and medulla with the usual chemical reagents such as aqueous potassium hydroxide (K), *Para*- phenylenediamine (P) and aqueous calcium hypochlorite (C). Thin layer chromatography was performed for authentic identification of the lichen substances in solvent system A.

RESULTS AND DISCUSSION

The study revealed occurrence of the 95 species belonging to 33 genera and 16 families and 1 genus to class Imperfectii on the monuments or nearby rocks in the seven districts of Madhya Pradesh. Out of the 16 families of lichens, members of family Physciaceae exhibit their dominance followed by members of families Teloschistaceae, Verrucariceae, Collemataceae and Lecanoraceae (Table-2). The probable reason for the luxuriant growth of Physciaceae lichens on monuments may be their adaptation mechanisms developed by these lichens against metalliferous environment (DeWitt, 1976). More than 47 crustose lichen dominate most of the localities followed by foliose, squamulose and leprose forms represented by 28, 16 and 4 species, respectively. The monuments and rocks in Hosangabad District exhibit the dominance of crustose lichens. The foliose, squamulose and leprose lichens were common in Rasien and Dhar districts (Table-3; Plate 1 & 2). The reason for luxuriant growth of crustose lichens on monuments may be due to their tolerance to the air pollution followed by foliose and fruticose forms (Gilbert, 1973). The monuments in Raisen District exhibit the maximum dominance of lichens represented by 43 species followed by Hosangabad, Dhar and Anoopur districts represented by 36, 29 and 28 species, respectively. The most common lichen genera growing on different monuments are Buellia, Caloplaca, Lecanora, Diploschistes, Endocarpon and Peltula. Monuments with sandstone as the construction material bears the luxuriant growth of lichens, followed by siliceous, bauxite, calcareous and quartz.

The most common species on monuments of Hosangabad District belong to the lichen genera *Lecanora*, *Parmotrema*, *Buellia*, and *Heterodermia*. A total of 36 species of 20 genera belonging to 14 families of lichens are recorded from the area and sandstone rock bear the maximum growth of lichens. The Dhar District has 29 species belonging to 19 genera

and 12 families of lichens. A total of 28 species belonging to 19 genera and 13 families are recorded from Anoopur District. In Anoopur the bauxite rocks are the major construction material for monuments, bears growth of 19 species followed by 5 species on sandstone and 2 on lime plaster, and a single species on brick; the common genera are Leptogium, Heterodermia and Lecanora. The districts of Dindori, Jabalpur and Tikamgarh exhibit poor diversity of lichens as both Dindori and Jabalpur represent the occurrence of 14 and 8 species. respectively. The area shows growth of the species of Buellia. Dirinaria, Caloplaca, Heterodermia, Endocarpon and Peltula on bauxite, sandstone and siliceous rocks. The Bhimbetka rock shelters in Raisen District have exposed sandstone rocks which showed luxuriant growth of 42 species of lichens belonging to 17 genera and 11 families. The species of Caloplaca, Diploschistes, Endocarpon, Peltula, Phylliscum, are the dominant species of the area (Bajpai, 2007).

The foliose and fruticose lichens are less effective biodeteriorant as they are loosely attached to the substratum or may be attached through a single or few points through holdfast or rhizines. The crustose and squamulose lichens are more effective deteriorant of the rock because they are adpressed to the substratum with their whole lower surface. The squamulose lichen taxa, during dry condition, exhibit slightly upward curved margins. Numerous particles of the substratum adhered on their lower surface are also removed from this action. The curling action of margin thus seems to be the result of the well documented pulling action of lichen thallus when it dries up. On receiving moisture the squamules or thallus expands and margin gets flattened and attach to the substrates once again.

The lichen growth on monuments depends on a number of factors, viz., climatic conditions, the dispersal of lichen diaspores, environmental pollution, nature of substratum, texture of rocks, rock porosity, water holding capacity of rock, chemical composition and architectural designs of the monuments.

The water holding capacity of rocks play important role in the colonization of lichens. Leprose powdery lichens *Lepraria* and crustose genera *Buellia*, *Cryptothecia* have very thick medulla, *Rinodina* and *Staurothele* with thin medullary crust over rock require less water, while, foliose and squamulose species of *Caloplaca*, *Endocarpon*, *Phylliscum*, *Parmotrema* and *Pyxine* grow on rocks having high water intake capacity and high rock porosity too. The sandstone and calcareous rocks having high water holding capacity exhibit more growth of lichens than the bauxite rocks.

Most of the chemical substances are derived through acetate-polymalonate pathway of secondary lichen products and have a metal complexing property due to their polar group (-CHO,- COOH, or –OH). The presence of the donar group in adjacent (ortho) position in the molecular structure of many lichen substances provides them metal complexing property,

Table 2-Distribution of lichens on some major monuments of Madhya Pradesh

S.	Name of Species	Forms	N	lumb	era	of sit	es st	u die	d	Substratum	Secondary substances
No.	· · · · · · · · · · · · · · · · · · ·		1	2	3	4	5	6	7		
1	Arthoniaceae										
	Cryptothecia lunulata (Zahlbr.) Makh, & Patw.	Crustose				2				Sandstone	Gyrophoric, barbatic acid
	Chrysopsora sp1	Crustose						1		Siliceous	Atranon
	Chrysopsora sp -2	Crustose						2		Sandstone	No chemicals
	Chrysophora sp. 2	Crustose						ĩ		Sandstone	Cryonhoric
	Udwinthoodaroon cherronuniense Awasthi & Singh	Folioso				2				Sandstone	Atranofin zeofin
•	Remainmodarpon Cherrapungense Awastin & Singh	Tomose				2				Sandstone	Au anomi, zeomi
2	B acid laceac	Constant	2							Conditions	No. objection la
	Baciara amolalana Nolo.	Crustose	2							Sandstone	No chemicals
	Le cant a u mbraticula (Nyl.) 8 mil n	Crustose							1	bauxite	No chemicals
	Tephromela atra (Huds.) Hafellner	Crustose			1	1				bauxite	No chemicals
3	Catillariaceae										
	Catillaria nil giriensis Pant & Awasthi	Squamulose					1			Siliceous	No chemicals
4	Clad oniac cac										
	Cladonia pra etermissa Archer	Foliose	1							Siliceous	Atranorin,
											fumarprot ccetri c,
											protocetraric, psoromic
5	Collemataceae										
	Collema coi locarpum (Müll, Arg.) Zahlbr.	Foliose	2							Sandstone	No chemicals
	C. crispum (Huds.) Weber ex Wigg.	Foliose		8						Sandstone	No chemicals
	C texanum Tuck	Foliose						1		Siliceous	No chemicals
	Lantagium chloromelum (Swartz ex Ach) Nyl	Foliose	2					<u></u>		Siliceous	No chemicals
	Le program en orone tam (Swartz ex Men.) Myr.	Foliosa	2			2				Sandstone	No chemicals
	L deniculation Nyl.	Feliese	2		1	2				Sandstone	No chemicals
	L phyuocarpum (Pers.) Mon.	Follose	2		1					Sandstone	No chemicals
	L ulvaceum (Pers.) Vainio	Foliose	2							Sandstone	No chemicais
6	Lecanoraceae									2.03	
	Lecanora hensseniae Vänska	Crustose				2				Siliœous	Atranonin, caperatic, zeori
	L indica (Stirton) Zahlbr.	Crustose				2				Sandstone	Usnic acid, zeorin
	L pseudostera Nyl.	Crustose	2				1			Sandstone	Atranorin, methyl perlatoli
	L subimmersa (Fée) Vainio	Crustose				3				Siliœous	Atranonin, leoidin
	L sulphurescens Fée	Crustose	2	3		3	2			Sandstone	Atranorin, gangloiden
	Le canora sp.	Crustose				2		2		Siliceous	Atranorin,
	Le canora sterile	Leprose		4						Calcarious	Atranorin, usnic, zeorin,
											salazinic
7	Lichinaceae										
	Phylliscum indicum Upreti	Squamulose	2	7				2	2	Sandstone	No chemicals
	P testudineum Henssen	Squamulose	_					2	_	Sandstone	No chémicals
8	Parmeliaceae	oquanaiooo						-			
0	Parmo trana praeoradi osum (Nyl.) Hale	Foliose	1	8		3	2	3		Sandstone	Atranonin chlorostmnori
	Farmo trema praesoreatosum (1991.) Haie	TOHOSE		0		5	2	5		Sandstone	parasorediosic
		Folioso				2				Sandatana	
	P. grayanum (Hue) Hale	Follose				2				Sandstone	Au anon n, parasoreurosic
	P. tinctorum (Nyl.) Hale	Follose				2				Sandstone	Alfanon n, chloroafranon
	Xanthoparmelia congensis (Stein) Hale	Foliose				2				Siliceous	Norstictic, usnic, stictic
	X. pseudocongensis Hale	Foliose	1			3				Siliceous	Norstictic, usnic, stictic
9	Peltulaceae										
	Peltula euploca (Ach.) Poelt ex Pisut	Squamulose	2	13	1	2	1	3	2	Sandstone	No chemicals
	P. obscurans (Nyl.) Gyelink	Squamulose		1			1	3	1	Sandstone	No chemicals
	P. patellata (Bagl.) Swinsow & Krog	Squamulose		8				4	2	Sandstone	No chemicals
	P turtuosu (Nees) Wetm	Squamulose		2				2		Siliceous	No chemicals
	P. tornuosa (Necs) wern.	Squamulose						2		Siliceous	No chemicals
10	F. zanibruckieri (Hasse) wein.	Squammose						2		Sinceous	rio chemicais
10	renusariaceae	Crustoss				n				Silimour	Atranonin
	Pertusaria coc codes (Ach.) Nyl.	Crustose				2				Siliceous	Atranoun
	P. indica Srivastava & Awasthi	Crustose				4				Siliceous	Arranonn, perlatolie
	P. kodaikanalensis Chois y	Crustose				2				Siliceous	No chemicals
	P. leucosora Nyl.	Crustose				3				Siliceous	Atranorin
11	Physciacea e										
.,	Ruallia cavlonancie Zahlbr in Zahlbr & Rechinger	Crustose						I		Sandstone	Noistictic
	Ductific de yonensis Zamor, in Zamor, de Rechniger	Crustose		T				1	2	Sandstone	Atranorin
	B. di sjecia Zanidi.	Crustose							-	Sandetono	Noisticite lichenovanth
	B, hemispherica Singh & Awasini.	Crustose							2	Calassione	A tempein
	B. posthabita (Nyl.) Zahlbr.	Crustose					,		-	C ar cane ous	Nemticity
	B. stigmea Tuck.	Crustose					5	L		Sandstone	Noisticite

1. Anoopur 2. Dhar 3. Dindori 4. Hosangabad 5, Jabalpur 6. Raisen 7. Tikamgarh

GEOPHYTOLOGY

	B. substigmea Singh & Awasthi	Crustose		1		2				Sandstone	Atranorin, sticitc
	B. auartziana Singh & Awasthi	Crustose				1				Quartz	Atranorin
	Dimelaena thyson ota (Tuck.) Hale & Culb.	Crustose						2		Calcareous	Lecanoric acid
	Diringrig gevialita (Afz in Ach) Moore	Foliose						3		Siliceous	Divarcatic
	D annlanata (Fée) Awasthi	Foliose	ī	2	1	2	i.	2	1	Siliceous	Divarcatic
	D confluent (Fr.) Awasthi	Foliose		2	÷.,	.	- î	2		Cement	Atranorin Divarcatio
	D. conjuctus (TT) Tritis an	ronose		2				5		plaster	, a lanor in, Divalca ic
	D consimilies (Stirton) Awasthi	Foliose		3				ĩ		Sandetone	Atmorin Sekikaic noid
	Heterodermia di ademata (Tayl) Awasthi	Foliose	1	5		2		4		Sandstone	Atranorin zeorin
	H di ssecta (Kumk) Awasthi	Foliose	2			2				Sandstone	Nonsticito salazinio
	H nseudospecio sa (Kurok) Culb	Foliose	2		i.	2				Sandstone	Atranorin norstictic
	n poe adospecto ou (rearon) e alor	T OHOSE	2		Ţ					Sandstone	zeorin, salazinic
	H. speciosa (Wulfen) Trevisan	Foliose	2		ĩ					Sandstone	At morin porstictic
	n speciosa (manea) rievistar	ronose	2		1					Sandstone	zeorin, tritemins
	Phaeophyscia hispidula (Ach.) Essl.	Foliose		9	1			1		Siliceous	Zeorin
	Physica dilatata NM.	Foliose		,				2		Sandstone	Atranorin zeorin
	P. dimidiata (Arn.) Nyl.	Foliose					2	2		Sandstone	Atranorin
	P. tribacoides Nvl	Foliose	2	3			~	2		Sandstone	Atmorin
	Pyvine netri cola Nyl in Commbie	Foliose	2	5				2		Siliceous	Lichenovanthone triteria
	P. subcine rea Stirton	Foliose				3		2		Siliceous	Lichenovanthone, triterpins
	Rinodina avydata (Massal) Massal	Crustose			r	5		2		Siliceous	Atmosin
12	Telo schistaceae	Clusiose			2			5		Silleous	Atlation
	Calaplaca amarkantkana Joshi & Immi	Crustage	т		1					Condatana	Desistia
	C awasthii Joshi & Ubreti	Squamulana	I		1			2		Sandstone	Parietin
	C cinnabaring (Ach.) Zahlbr	Squamulose		2				2		Siliceous	
	C cupulifera (Vainio) Zahlbr	Crustose			а			2		Siliceous	Atranorin, parietin
	C. deciniens (Arnold) Blomb & Forse	Crustose		7	1			3		Sandstone	Parietin
	C. subpoliciture locki & Hanti	Crustose		/						Sandstone	Parietin
	C. subsolute (Nul.) Zakiha	Crustose						2		Sandstone	Atranorin
	C. subsoluta (Nyl.) Zanidr.	Crustose		10				1	×.	Sandstone	Parietin
	C. chabbaga (Er.) Müll Ara	Squamulose				1				Sandstone	Atranorin
	C. tronica lochi & lbmb	Crustose	1			1				Siliceous	Parietin
		Squamulose						1		Siliceous	Parietin
	Calopiaca Sp.1	Crustose						3		Sandstone	Parietin
	Caloplaca Sp.2	Crustose	2							Sandstone	Parietin
12	Calopiaca Sp. 3	Crustose		4						Sandstone	Atranorin, parietin
15	Diploschistos gassierlumbaus (N. 1) M.										
	Di ploschi sies cae sioplumbeus (Nyl.) Vai nio	Crustose						2		Calcareous	Lecanoric, diploschistic,
	D candidionism of (Kooman 11) 7.11										ors elli c
	D. cunatalss inters (Krempein.) Zanibr.	Crustose		6		2				Siliceous	Lecanoric, diploschistic
	D. gypsaceus (Ach.) Nyl.	Crustose						3		Sandstone	Lecanoric
	D. rampodaensis (Nyl.) Zahlbr.	Crustose			1	2	1	3		Siliceous	Lecanoric
	D. scruposus (Schreb.) Norman	Crustose						l		Si liceous	Lecanoric, diploschistic,
14	Translinger										ors elli c
14	Trapelia co										
15	Trich otheli smoo	Crustose	2	1						Bauxite	Atranorin
15	Poring subistangates (Mad.) MULL										
16	Vorma submerestes (Nyl.) Mull. Arg.	Crustose				3				Siliceous	Atranorin
10	Augustic la india										
	Awasine na maica Singh	Crustose				1				Sandstone	No chemicals
	Eedouween vellereum Zschacke	Foliose	1							Siliceous	No chemicals
	Endocarpon nanum Singh & Upieti	Squamulose	3	4				1	2	Sandstone	No chemicals
	E publidum And	Squamulose						2		Sandstone	No chemicals
		Squamulose		3						Sandstone	No chemicals
	r rosett um Singh & Upreti	Squamulose						2		Sandstone	No chemicale
	1. subrosettum Singh & Upreti	Squamulose	2	7	1	2	2	2	1	Sandstone	No chemicale
	Staurothele fissa (Taylor) Zwack	Crustose		3	2	Ĩ		2		Silicome	No chemicals
	The lene lla Turidel la (Nyl.) Mayth.	Crustose	1					-		Bauxite	No chemicals
	verrucaria coerulea (Ram.) DC. in Lam. & DC.	Crustose	3		1					Silicome	No chemicals
	Lichen Imperfectii									Staveous	two enernicals
	Le praria lobifican s Nyl.	Leprose	I	6)		1		Sandetan	Atmnants
	L. leiduini i (Hue) R. Harris	Lepiose	-	U.		**		1		Sandstone	Attanorin
										ornecous	I DICTORS

PLATE-1 Figs 1-5; Fig. 1. Bhimbetka Rock Shelter. Fig. 2. Rock cut statue at Dhar. Fig. 3. Caloplaca awasthii Joshi & Upreti. Fig. 4. Caloplaca sp. Fig 5. Peltula euploca (Ach.) Poelt ex Pisut.

PLATE-2

Figs 1-4; Fig. 1. Caloplaca cupulifera (Vainio) Zahlbr. on wall at Alamgir gate, Dhar. Fig. 2. Pyxine and Dirinaria species on wall of Delhi gate, Dhar. Fig. 3. Parmotrema praesorediosum (Nyl.) Hale. Fig.4. Diploschistes rampoddensis (Nyl.) Zahlbr.

Table 3-Lichen growth for	rms in different districts.
---------------------------	-----------------------------

Growth forms District ↓	->	Crustose	Leprose	Squamulose	Foliose
Anoopur		9	1	4	14
Dhar		10	2	9	7
Dindori		6	0	3	5
Hosangabad		21	1	3	11
Jabalpur		5	1	4	4
Raisen		14	2	15	12
Tikamgarh		1	0	6	1

which causes biological weathering of rocks (Gehrmann *et al.*, 1988). According to Chen *et al.*, (2000), lichens contribute to mechanical weathering of monumental rock in four ways (a) by penetration of mycobiont hyphae in surface, (b) by expansion and contraction of lichen thalli with seasonal changes due to climatic factors, (c) by swelling action of organic salts produced by lichens and (d) by fracturing and incorporation of mineral fragments by lichen thalli.

Out of 95 species of lichnes recorded from the state monuments, 65 species belonging to 20 genera are closely addpressed to the substratum. They exhibit penetration of mycobiont or medullary hyphae in the substratum and also involve in oxalate crystal formation and metal complexing activity due to the presence of different lichen substances causing chelation of cations from rock minerals. The lichens not producing secondary substances (30 species) produce oxalate crystals causing biogeophysical weathering of the substrates.

Different lichen species actively involved in biodeterioration of carbonate, sandstone rocks and other lithic substrates. Lichens are capable of producing calcium oxalate on varieties of substrates. The warmer and drier sites are more conducive to the production of calcium oxalate dehydrates (Gehrmann *et al.*, 1988). The lichens with thick medullary zone (e.g. *Peltula*, and *Diploschistes* species) retain more moisture and also contain greater amounts of oxalic acid are thus responsible for more chemical decomposition of rocks.

Among the different lichens, species of *Caloplca*, *Buellia*, *Diploschistes*, *Lecanora* and *Lepraria* which form a thick crust over the substrate involve in biogeophysical and biogeochemical weathering are considered as the most effective biodeteriorant species of lichens. The species of *Dirinaria*, *Heterodermia*, *Phaeophyscia*, *Physcia*, *Pyxine*, *Parmotrema* and *Xanthoparmelia* being leafy in shape, attach to the substratum with few points on their lower side, are less effective biodetriorant than crustose ones.

Lichens commonly produce secondary chemicals, including various organic acids, which actively chelate substrate cations and thus modify the chemical and physical structure of mineral substrata (Jones & Wilson, 1980). Chen *et al.*, (2000) suggested that oxalic acid secreted by the lichen mycobionts is insoluble in water and react with the monumental rock substrates contaning Ca and Mg, to form the insoluble compounds of calcium and magnesium oxalates which accumulate on the surface of the substratum. The corrosion of rocks in the study area can not be ruled out as it has the drier and warmer climate coupled with luxuriant growth of oxalic acid and chelating substance producing lichens. The enumeration of lichens and their type of biodeterioration capacity data will be helpful in conducting future biomonitoring studies and to the conservators for adopting conservation practices for the monuments in Madhya Pradesh.

ACKNOWLEDGEMENTS

The authors are thankful to the Director, Dr. R. Tuli, National Botanical Research Institute, Lucknow for providing laboratory facilities.

REFERENCES

- Ascaso C, Galvan J & Ortega, C, 1976. The pedogenic action of Parmelia conspersa, Rhizocarpon geographicum & Umbilicaria pustulata. Lichenologist 8: 151-171.
- Ayub A, 2005. Lichen flora of some major historical monuments and buildings of Uttar Pradesh. Ph. D. thesis, Dr. R. M. L. Avadh University, Faizabad.
- Bajpai A, 2007. Taxonomic and ecological studies on lichens of Bhimbetka world heritage zone, Raisen district, Madhya Pradesh. Ph. D. thesis, Lucknow University, Lucknow.
- Bech-Andersen J & Christensen P, 1983. Studies on lichen growth and deterioration of rocks and building material using optical methods In: Oxeley TA & Berry S (Eds). *Biodeteriration* 5: Wiley, Chichester, pp. 568-572.
- Chatterjee S, Singh A & Sinha GP, 1995. Lichens from some monuments in Karnataka and Orissa, India. *Geophytology* 25: 81-88.
- Chen J, Blume H & Bayer L, 2000. Weathering of rocks induced by lichen colonization- a review. *Catena* **39**: 121-146.
- Danin A, Gerson R & Garty, J, 1983. Weathering pattern on hard limestone and dolomite by endolithic lichens and cyanobacteria supporting evidence for colian contribution to Terra Rossa soil. Soil Science 136: 213-217.
- DeWitt T, 1976. Epiphytic lichens and air pollution in the Netherlands, J. Crammer, Germany *Biblio. Lichen* **5**: 226-227.

Gehrmann C K, Krumbien WE & Petersen K, 1988. Lichen weathering activity on mineral and rock surface. *Studia Geobotanica* 8:33-45.

- Gilbert O, 1973. Lichen and air pollution. In: Ahamadjian V & Hale ME (Eds). *The lichens*. Academic Press, New York, pp. 443-472.
- Jones D, Wilson MJ & Tait JM, 1980. Weathering of a basalt by *Pertusaria corallina*. Lichenologist 12: 277-289.
- Jones D & Wilson MJ, 1985. Chemical activity of lichens on mineral surface. A review. Int. Biodeterior. Bull. 21: 99-104.
- Piervittori R, Salvadori O & Isocrono D, 2004. Literature on lichens and biodetrioration of stone work IV. *Lichenologist* 36 (2): 145-157.
- Saiz- Jimenez C, 1981. Weathering of building materials of the Giralda (Seville, Spain) by lichens. Proc. 6th Triennial meeting ICOM Committee for Conservation (Ottawa, 4 October 1981). Ottawa.
- Singh A & Upreti DK, 1991. Lichen flora of Lucknow with special reference to its historical monuments: *In*: Agarwal OP & Dhawan S, (Eds). *Biodeterioration of Cultural Property*, MacMillan India, New Delhi, pp. 219-231.
- Upreti DK, 2002. Lichens of Khajuraho temple and near by area of Mahoba and Chattarpur district. In: Srivastava RB, Mathur GN & Agarwal OP (Eds.). *Proceedings National Seminar on Biodeterioration of material-2*, DMSRDE, Kanpur, pp. 123-127.
- Walkar FJ & James PW, 1980. A revised guide to micro-chemical technique for the identification of lichen products. *Brit. Lic. Soci. Bull.* 46: 13-29.