Foliar architecture of Passiflorales occurring at Visakhapatnam

B. Anna Mani and M. Prabhakar
Department of Botany, Osmania University, Hyderabad-500 007, India

Abstract

Anna Mani, B. \& Prabhakar, M. 1995. Foliar architecture of Passiflorales occurring at Visakhapatnam. Geophytology 24(2): 147-154.

This article discribes the foliar architecture including the gross morphology and venation patterns in 14 species of Passiflorales occurring at Visakhapatnam, India. The venation patterns recorded are pinnately pancraspedobrochidodromous, craspedodromous, palmatous actino-brochidodromous, actinodromous and campylo-actinodromous types. The term campylo-actindromous type is newly introduced. The foliar architecture is found to be of taxonomic importance and a key for identification of these species is provided.

Key-words- Foliar architecture, Passiflorales, Taxonomy.

INTRODUCTION

IN Angiosperms, the foliar architecture has been considered as a good taxonomic character especially when used with other characters. (Lee 1948;Hickey 1973,1979; Hickey \& Wolfe 1975; Foster, 1950; Varghese 1966; Melville 1963, 1976; Kundu 1974; Sehgal \& Paliwal 1975; Singh et al. 1976; Mohan \& Inamdar 1982; Rao et al.,1983; Spicer 1986; Anna Mani \& Prabhakar 1991a, 1991b; Anna Mani 1993; Ferzana Jabeen et al, 1991). The present investigation is a part dealing with the identification of Visakhapatnam flora based on the foliar architecture.

MATERIAL AND METHODS

Mature leaves of 14 species belonging to Passiflorales viz., Benincasa hispida (Thunb.) Cogn., Citrullus colocynthis (L.) Schrad. Coccinea grandis (L.). Voigt., Cucurbita maxima Duch., Cucumis sativus L., Lagenaria leucantha (Duch.) Rusby., Luffa acutangula (L.) Rob., L. cylindrica (L.) Roem., Momordica charantia L., Mukia maderaspatana (L.) Roem., Trichosanthesanguina L . and T. tricuspidata Lour. (Cucurbitaceae), Turnera ulmifolia L. (Turneraceae), Passiflora foetida L. (Passifloraceae) available at Visakhapatnam (Venkateswarlu ct al., 1972) have been collected and preserved in Carnoy's fixative (Johansen, 1940). Ten leaves of each species collected from five different plants were cleared following the usual techniques (Dilcher 1974). The terms used are afterHickey (1973, 1979), Melville (1976), Prabhakarand Ramayya (1982), Anna Mani and Prabhakar, (1991a,

1991b, 1992) and Ferzana Jabeen et al. (1991). To accommodate the new venation patterns encountered, the term campylo-actinodromous (one or more primary veins or their branches originating at, or close to a single point and running in strongly developed, recurved arches before diverging towards margin) is introduced.

OBSERVATIONS AND DISCUSSION

The leaves are simple, alternate, symmetrical. They are elliptic in Turnera ulmifolia, cordatus-lobed in Cucurbita maxima, Benincasa hispida, Lagenaria leucantha and Cucumis sativus, cordatus-angularis in Coccinea grandis, Luffa acutangula and L. cylindrica, cordate in Mukia maderaspatana, palmatifid, cordate-trilobed in Passiflora foetida and Trichosanthes anguina, pedatus in Trichosanthes tricuspidata, Citrullus colocynthis and Momordica charantia. The margin is crenulate in five taxa, crenate in Mukia, lobed in Citrullus, entire in Passiflora, crenulate to lobed in Momordica and Trichosanthes tricuspidata, erosus in Benincasa and Lagenaria, serrulate in Cucurbita and biserratus in Turnera. The apex is acute in Passiflora, Lagenaria, Luffa cylindrica, Turnera, Trichosanthes tricuspidata and Benincasa, retuse in Cucumis, acute mucronate in Luffa acutangula, obtuse in Citrullus and obtuse mucronate in five other taxa. Leaf base is cordate in all except in Turnera and Citrullus where it is acute and obtuse respectively (Table 1).

The general venation pattern is planiusculus (veins distributed in one plane in the mesophyll; c.f. Prabhakar \& Ramayya 1982), palmatous actino-brochidodromous
in Passiflora, Coccinea and Luffa acutangula (Figs. 1B, 3B); actinodromous in Cucurbita, Cucumis, Lagenaria, Luffa cylindrica, Momordica, Mukia and Trichosanthes tricuspidata (Fig. 3A); campylo-actinodromous in Benincasa (Fig. 2A) and Trichosanthes anguina, while pinnately
planiusculus pancraspedo-brochidodromous (secondary veins branching within the margin, one of the branches terminating at the margin, the other joining the superadjacent secondary veins throughout the leaf; Synonym: semicraspeodromous of Hickey, 1973) in

Figure 1 A, B. Leaves showing venation patterns, a, b. enlarged portion from middle of the leaf showing areoles and veinlets; A,a. pancraspedo-brochidodromous in Turnera ulmifolia; B,b. Actino-brochidodromous in Passiflora foetida (lpstlateral primaries straight; Pmc-primary vein curved).

Table 1. Macromorphology of leaf

Name of the taxa	Leaf ramification	Apex	Base	Margin	Venation type	Lateral primaries		
						Number	Course	Angle of divergence
Turnera ulmifolia	S	A	A	BS	PCB	-	-	-
Passiflora foetida	PAF	A	C	EN	AB	4	UC	AM-R
Benincasa hispida	S	A	C	ER	CA	2	RET	AW
Citrullus colocynthis	PAF	OB	OB	LO	CRA	-	-	-
Coccinia grandis	S	OBM	C	CRE	AB	4	STR	AM-R
Cucurbita maxima	S	OBM	C	SER	AC	2	STR	AW
Cucumis sativus	S	RE	C	CRE	AC	4	STR	AM-R
Lagenaria leucantha	S	A	C	ER	AC	2	STR	AM
Luffa acutangula	S	AMU	C	CRE	AB	2	STR	AM-R
L. cylindrica	S	A	C	CRE	AC	6	STR	AM-OB
Momordica charantia	PAF	OBM	C	CRE-LO	$A C$	2	STR	AW
Mukia maderaspatana	S	OBM	C	CR	AC	2	STR	AW
Trichosanthes anguina	PAF	OBM	C	CRE	CA	2	RET	AW
Trichosanthes tricuspidata	PAF	A	C	CRE-LO	AC	2	STR	AW

A-acute; AB -actino-brochidodromous; AC - actinodromous; AM -acute moderate; AMU - acute mucronate; AW - acute wide; BS - biserratus; C-cordate; CA-campylo-actinodromous; CR- crenate; CRA-craspedodromous; CRE-crenulate; EN-entire; ER-erosus; LO-lobate; OB-obtuse; OBM-obtuse mucronate; PAF-palmatifid; PCB- pancraspedo-brochidodromous; R-right angle; RE-retuse; RET-retroflexed;S-simple;SER-serrulate; STR-straight; UC- uniformly curved; - absent.

Turnera (Fig. 1A) and craspedodromous in Citrullus (Fig. 2A; Table 1). The thickness of the primaries are stout in 12 taxa but in Citrullus and Mukia it is moderate. The course of the median primaries are usually straight in all but curved in Turnera and Citrullus (Figs. 1A, 2B). The lateral primaries vary from two to six (Fig. 2A;Table 1). The angle of divergence of the lateral primaries are acute moderate to right angle in Passiflora, Coccinea, Cucumis and Luffa acutangula (Figs. 1B, 3B), acute moderate to
obtuse angle in Luffa cylindrica (Table 1), acute wide in Benincasa, Cucurbita, Momordica, Mukia and Trichosanthes anguina (Fig. 2A) and acute moderate in Lagenaria and Trichosanthes tricuspidata (Table 1). The lateral primaries are uniformly curved in Passiflora (Fig. 1B), recurved in Benincasa and Trichosanthes anguina (Fig.2A) and straight in rest of the nine species (Table 1). The lateral primaries are simple in Passiflora (Fig. 1B) but branched in others.

Table 2. Characters of secondary veins

Name of the taxa	Secondaries of Midvein/Lateral veins			Course	Behaviour of loop forming branches
	Number	Position	Angle of Divergence		
Turnera ulmifolia	20/-	OP-AL/-	AN-AM/	UC-AC	A
Passiflora foetida	14/6	AL-OP/ALOP	AM/AMR	UC-AC	R-O
Benincasa hispida	6-12/6-8	AL/AL	AM/AM	UC-AC	O
Citrullus colocynthis	10/-	OP/-	R-AW/-	STR	-
Coccinia grandis	8/4	OP-AL/ALSO	AM-AW / AW	UC-AC	R-O
Cucurbita maxima	8/8	OP-AL/AL	AM/AM	STR	-
Cucumis sativus	6/4	AL-OP/AL	AM/AM	STR	-
Lagenaria leucantha	6/4-6	SO-AL/ALOP	AM-AW/AM	STR	
Luffa acutangula	8/6	OP-AL/OPAL	AM-AM/AW	UC-AC	R-O
L. cylindrica	6/6	OP/OP-AL	AM-AW/AM	UC-AC	R-O
Momordica charantia	8/8	AL-SO/OPAP	AM-AW / AM-AW	UC-AC	R-O
Mukia maderaspatana	6/4	SO-AL/ALOP	AM-AW/AW	UC-AC	R-O
Trichosanthes anguina	8/6	OP-SO/AL	AM-R/AM-R	UC-AC	O
Trichosanthes tricuspidata	16/16	OP-SO/ALOP	R-AW/AM-R	UC-AC	O

[^0]

Figure 2A,B. Leaves showing venation patterns, a,b. enlarged portion middle of the leaf showing areoles and veinlets; A. campylo-actinodromous in Benincasa hispida; B,b. Craspedodromous in Citrullus colocynthis (lpb-lateral primaries branched; lpr: lateral primary recurved).

Table 3. Characters of tertiary veins and areoles

Name of the taxa	Course	Relationship to midvein	Areoles		Veinlets	
			Shape	Frequency/Sq. cm.	Branching	Course
Turnera ulmifolia	SI-RET	PC	Q	80	1B/S	C/STR
Passiflora foetida	CO-STR	POO	Q	120	$1 B / S$	C/STR
Benincasa hispida	CS-RET	POO	Q	160	2B	STR
Citrullus colocynthis	RE	-	Q	60	3B	STR
Coccinin grandis	Z	POO	Q	75	1B/S	C/STR
Cucurbita maxima	RE	-	Q	140	2 B	STR
Cucumis satious	Z	POO	P	135	1B	C
Lagenaria leucantha	CS-STR	POO	Q	150	S	C
Luffa acutangula	CO-RET	POO	P	175	1B	STR
L. cylindrica	CO-Z	POO	P	175	1B	STR
Momordica churantia	CO-Z	POO	P	180	1B	STR
Mukia maderaspatana	CO-Z	POO	Q	380	1B	STR
Trichosanthes anguina	CO-RET	POO	Q	155	1B	STR
Trichosanthes tricuspidata	RE		Q	85	1B	STR

B-branched; C-curved; CO-convex; CS-convexly sinuate; P-pentagonal; PC- perpendicular constant; POO- perpendicular but oblique outward; Q-quadrangular; RE-reticulate; RET- retroflexed; S-simple;SI- sinuate; STR straight; Z- zig zag; - absent.

The number of secondaries produced by the midvein vary from three to ten pairs (Fig. 1A; Table 2) and on the lateral primaries they vary from two to eight pairs (Table 2) but in Passiflora the basal lateral primaries produce secondaries only on exmedial side (Fig. 1B). The secondaries are basally alternate to apically opposite in Passiflora and Cucumis (Fig. 1B) but basally opposite to apically alternate in Turnera, Coccinea, Cucurbita and Luffa acutangula (Fig. 1A, 3B; Table 2), and basally alternate to apically subopposite in Momordica, opposite to subopposite in Trichosanthes (Table 2), subopposite to alternate in Lagenaria and Mukia (Table 2), alternate throughout in Benincasa (Fig. 2A), opposite in Citrullus and Luffa cylindrica, but on the lateral primaries the secondaries are basally alternate to apically opposite in Lagenaria, Mukia and Trichosanthes tricuspidata (Fig. 3A; Table 2), opposite to alternate in Luffa and Momordica (Table 2) and alternate in Cucurbita, Cucumis and Trichosanthes anguina. The angle of divergence of the secondaries on median primary varies from acute moderate to acute wide in Coccinea, Lagenaria, Luffa cylindrica, Momordica and Mukia (Fig. 3B; Table 2), acute moderate to right angle in Trichosanthes anguina; right angle to acute wide in Trichosanthes tricuspidata and Citrullus (Figs 2B, 3A), acute narrow to acute moderate in Turnera (Fig. 1A) and it is nearly uniform being acute moderate in Passiflora, Benincasa, Cucurbita, Cucumis and Luffa acutangula (Figs 1B, 2A; Table 2). The angle of divergence of secondaries on the lateral primaries vary from acute moderate to right angle in Passiflora and Trichosanthes (Figs 1B, 3A), acute wide in Coccinea and Mukia (Fig. 3B), acute moderate in Benincasa, Cucurbita,

Cucumis, Lagenaria and Luffa cylndrica (Fig. 2A), acute moderate to acute wide in Luffa acutangula and Momordica (Table 2). They are relatively thick in 11 and moderately thick in Citrullus, Luffa acutangula and Trichosanthes tricuspidata (Figs 2B, 3A; Table 2). The course of the secondaries are uniformly curved but abruptly curved at margin in Benincasa, Coccinea, Lagenaria and Luffa (Figs 2A, 3B; Table 2), uniformly curved to abruptly curved at margin in Turnera, Mukia, Momordica and Trichosanthes tricuspidata (Figs 1A, 3A; Table 2) but straight in Citrullus, Cucurbita, Cucumis, Lagenaria and Trichosanthes anguina (Table 2). However, in Trichosanthes tricuspidata (Fig. 3A) some of the secondaries are terminating in the margin while others are forming loops. The secondaries are branched in Turnera, Citrullus, Lagenaria, Momordica and Mukia (Figs. 1A, 2B). All or few of the secondaries are forming loops throughout in ten species (Table 2). The loop forming branches of secondary veins join the superadjacent secondaries usually at right angle to obtuse angle in six species (Figs 1B, 3B; Table 2), obtuse angle in Trichosanthes and Benincasa (Figs. 2A, 3A) and acute angle in Turnera (Fig. 1A). The loop forming branches are enclosed by arches of 3 and 4° veins in ten species. Two intersecondary veins are present in Citrullus, four in Coccinea, Luffa cylindrica, Momordica and upto 10 in Trichosanthes anguina (Fig. 3B) and are of simple type.

Tertiaries are predominantly percurrent, alternate to opposite throughout the lamina in 11 species (but reticulate in leaf apex of Benincasa, Lagenaria and Luffa; Fig. 2A) while reticulate throughout in Citrullus, Cucurbita and Trichosanthes tricuspidata (Fig. 3A). The percur-

Figure 3A,B. Leaves showing venation patterns, a, b. enlarged portion from middle of the leaf showing areoles and veinlets; Aa. Actinodromous in Trichosanthes tricuspidata; B,b. Actino-brochidodromous in Coccinea grandis (lp-lateral primary; lpbr-lateral primaries branched; mp-median primary; S-secondary vein).
rent tertiaries are predominantly simple, convex to straight in Passiflora (Fig. 1B), convexly zigzag in Momordica and Mukia but branched, convexly sinuate to straight in Lagenaria, convexly zigzag in Luffa cylindrica, convexly retroflexed in Luffa acutangula and Trichosanthes anguina, zigzag in Coccinea and Cucumis, convexly sinuate to retroflexed in Benincasa and sinuate to retroflexed in Turnera (Figs 1A, 2A; Table 3). The angle of origin of tertiaries are predominantly acute angle: acute angle (AA) to right angle: right angle (RR) (Figs. 2A, 3A), except in Turnera (Fig. 1A), where they are right angle: right angle (RR) to acute angle: right angle (AR) but in Passiflora (Fig. 1B) and Momordica it is acute angle: right angle (AR) to acute angle: acute angle (AA). The relationship of tertiaries to midvein is perpendicular but oblique outward in ten species and perpendicular constant in Turnera (Fig. 1A; Table 3).

The next finer order 4^{0} veins are distinct in Trichosanthes anguina 6° veins are in Cucurbita and 5° veins in rest of the species (Figs 1AB, 2AB, 3AB). The higher order of veins are predominantly orthogonal in all except in Citrullus and Trichosanthes tricuspidata where they are random reticulate (Figs 2B, 3A). The
marginal ultimate venation is looped in all except Mukia where it is incomplete.

The development of the areoles are imperfect and the arrangement is random in all. The shape of the areoles vary from pentagonal to quadrangular (Figs 1ab, $2 \mathrm{ab}, 3 \mathrm{ab}$; Table 3) and are large ($60-85 / \mathrm{cm}^{2}$) in Citrullus, Coccinea, Turnera and Trichosanthes tricuspidata (Figs 1a, $2 \mathrm{~b}, 3 \mathrm{ab}$), medium ($120-380 / \mathrm{cm}^{2}$) in ten other taxa (Figs $1 \mathrm{~b}, 2 \mathrm{a}$; Table 3). The number of veinlets/areole is one in 11 species and one to two in Turnera, Passiflora and Coccinea (Figs 1a, b,3b) and the frequency of areoles $/ \mathrm{cm}^{2}$ vary from $60-380$ (Table 3.) The veinlets are simple, curved in Lagenaria, once branched to simple, curved to straight in Turnera, Passiflora and Coccinea (Figs 1a, b, 3b; Table 3), once branched, straight in Luffa, Momordica, Mukia and Trichosanthes (Fig. 3a) but curved in Cucumis, twice branched, straight in Benincasa and Cucurbita and thrice branched, straight in Citrullus (Fig. 3b; Table 3).

All the above characters are found to be of taxonomic value and based on the above a key for identification of the Passiflorales occurring at Visakhapatnam is provided below:

Key for identification of the taxa:

1. Leaves with pinnate venation

2 Venation pancraspedo-brochidodromous type
2. Venation craspedodromous type

1. Leaves with palmate venation
2. Venation campylo-actinodromous type
3. Leaves simple, margin erosus
4. Leaves palmatifid, margin crenulate
5. Venation palmatous actino-brochidodromous or actinodromous type
6. Venation palmatous actino-brochidodromous type
7. Number of lateral primaries two
..Luffa acutangula
8. Number of lateral primaries four
9. Leaves palmatifid, cordate-trilobed, lateral primaries not branched
10. Leaves simple, cordatus-angularis, lateral primaries branched
...Passiflora foetida
...Coccinea grandis
11. Venation palmatous actinodromous type
12. Leaves pedatus
13. Tertiaries percurrent
14. Tertiaries reticulate
15. Leaves cordate
16. Secondary veins looped
17. Secondary veins terminating at margin
18. Number of lateral primaries four
19. Number of lateral primaries two
20. Tertiaries reticulate, leaf margin serrulate
21. Tertiaries percurrent, leaf margin crenulate
22. Veinlets simple curved, marginal ultimate venation looped
23. Veinlets once branched, straight, marginal ultimate venation incomplete
...Lagenaria leucantha
...Mukia maderaspatana

ACKNOWLEDGEMENT

The authors are grateful to the University authorities for providing facilities.

REFERENCES

Ann Mani, B. 1992. Foliar architecture of the dicotyledonous flora of Visakhapatnam. Thesis, Osmania Univ. Hyderabad, India.
Anna Mani, B. \& Prabhakar, M. 1991a. Foliar architecture of the Visakhapatnam Flora. 1. Ranales Indian J. Forestry 14:131-137.
Anna Mani, B. \& Prabhakar, M. 1991b. Foliar architecture of some medicinal plants (Celastrales). Asian Jour. Pl. Sci. 3(1): 17-21.
Anna Mani, B. \& Prabhakar, M. 1992. Foliar architecture of some Medicinal Plants (Verbenaceae). Jour. Sci. Res. Pl. E Med. 13: 8-16
Dilcher, D.L. 1974. Approaches to the identification of Angiosperm leaf remains. Bot. Rev. 40: 1-157.
Ferzana Jabeen, Prabhakar, M. \& Leelavathi, P. 1991. Foliar architecture in relation to taxonomy of Malvales. Asian Jour. Pl. Sci. 3(2): 17-53.
Foster, A.S. 1950. Morphology and venation of the leaf in Quiina acutangula. Duke. Am. J. Bot. 37: 159-171.
Hickey, L.J. 1973. Classification of the architecture of dicotyledonous leaves. Am. J. Bot. 60: 17-33.
Hickey, L.J. 1979. A revised classification of the leaf architecture in dicotyledonous leaves. In C.R. Metcalfe and L. Chalk (Ed.) 2nd ed. Anatomy of Dicotyledons Vol. 1, pp 25-39. Oxford Univ. Press, Oxford.
Hickey, L.J. \& Wolfe, J.A. 1975. The bases of angiosperm phylogeny: Vegetative morphology. Ann. Mo. Bot. Gdn. 68: 538-89.

Johansen, D.A. 1940. Plant microtecniques. McGraw Hill Book Co., New York.
Kundu, B.C. 1974. Dicotyledonous leaf architecture in relation to the plant taxonomy. Bull bot. Soc. Bengal 28(1/2): 133-138.
Lee, A.T. 1948. The genus Swainsona. Contrib. New South Wales Herb. 1: 131-271.
Melville, R. 1963. A new theory of the angiosperm flower. 11. The androecium. Kew Bull. 17: 1-63.
Melville, R. 1976. The terminology of leaf architecture. Taxon 2: 549561.

Mohan, J.S.S. \& Inamdar, J.A. 1982. Leaf architecture of Apocynaceae. Proc. Indian Acad. Sci. 191: 189-200.
Prabhakar, M. \& Ramayya, N. 9182. Foliar venation pattern and their taxonomic importance in Indian Portulacaceae. Geophytology. 112: 49-54.
Rao,N.V., Avita, S., \& Inamdar, J.A. 1983. Studies on the Moringaceae. Feddes repert. 94(3/4): 213-223.
Sehgal, L. \& Paliwal, G.S. 1975. Studies on the leaf anatomy of Eupher-tiae-11. Venation patterns. Jour. Lin. Soc. Bot. 68: 173-208.
Singh, V., Jain, D.K. \& Sharma, Meena. 1976. Leaf architecture in Salix. J. Indian Bot. Soc. 55(2/3): 140-148.

Spicer, R.A. 1968. A new concept in terminology for the description of dicotyledonous leaf venation patterns. Bot. J. Linn. Soc. 93(4): 379-388.
Venkateswarlu, J., Bhirava Murthy, P.V. \& Narasimha Rao, P. 1972. The flora of Visakhapatnam. A.P. Akademi of Sciences, Hyderabad.
Varghese, T.M. 1966. Foliar venation of some Scrophulariaceae. Agra Univ. J. Res. 16: 153-168.

[^0]: AC - abruptly curved; AL - alternate; ALOP - basally alternate to apically opposite; ALSO - alternate to subopposite; AM - acute moderate; AMR - acute moderate to right angle; AN - acute narrow; AW - acute wide; O - obtuse angle; OPAL - opposite to alternate; R - right angle;
 STR - straight; UC - uniformly curved; - absent.

