POLLEN MORPHOLOGY AND SYSTEMATTC RELATTONSHIP OF SABIACEAE*

MADHUSUDAN MONDAL AND KRISHNA MITRA

Central National Herbarium, Botanical Suroey of India, LLowrah-711 103 (India)

Abstract

In the present study 222 materials from 10 species of Salia Colebr. and 21 species of Meliosma B1. have been investigated. This study is an codeavoun to interpet the systematic ambiguities on pollen morphological characters. Palynological data reinforce the placement of Sabia Colebr. and Meliosma Bl. in a single family Sabiaccae which is distributed over tropics and subtropics of the Old World. A phytogeographical note included facilitates the correlation of past climate and fossils with the prescnt day distribution of the family: A lot of megafossil representatives have been described from the genus Meliosma Bl. and it is expected that there might be fossil pollen also, though not yet assigned. So, this study will also be helpful in identification of fossil pollen in future.

INTRODUCTION

The family Sabiaceae was first proposed and described by Blume (1851). He described the only taxon Sabia Colebr. (Meniscos!a Bl.) under his Sabiaceae. Bentham and Hooker, f. (1862), Warburg (1896) and others expanded the family with four recognised genera: Sabia, Meliosma, Phoxanthus and Ophiocaryon. The latter two are monotypic genera from Brazil and Guiana. Meliosma Bl. with about one hundred thirty to one hundred forty described species and quite a few infraspecific taxa (sensu Beusekom, 1971), is the largest genus.

In widely used systems, the botanists acceptcd Warburg's (l.c.) treatment for placing the genera. Hooker f. (1876) in the Flora of British India followed the system of Bentham and Hooker f. (1.c.). Recently, Airy Shaw (1973) has expressed doubt about the naturalness of the Sabiaceae in the sense of Bentham and Hooker f. (l.c.) and propored a monotypic family Sabiaceae Bl. with about 55 species of Sabia and introducing a separate family Meliosmaceae Endl. which includes 2 genera, Meiiosma (100 spp .) and Ophiocaryon (=Phoxanthus) (2 spp.). According to him Sabiaceae is an interesting group showing possible/or probable connections with Menispermaceae, Icacinaceae and Meliosmaceae. Minute obscure gland dots on leaves resemble Myrsinaceae. He stated that relationship between Sabiaceae and Meliosmaceae requires confirmation. Regarding the possible relationship of Sabiaccac (s.l.) with other families Beusekom (l.c.), CHEN (1943) and others say that there is no concensus of opinion (Table-1). Most authors have related them (especially Meliosma) to the Sapindaceae, Hippocastanaceae or Anacardiaceac, others assume a relationship with families like Menispermaceae, Lardizabalaceae, Icacinaceae and Schizandraceae. So, this appears that taxonomic disagreement lies as regards its naturalness, affinitics and relationships.

Cufodontis (1939) and How (1955) revised Chinese Meliosma only. There are two important revisions on the family (in part). One is of Sabia Colebr. by Cihen (l.c.). He divided the genus Sabia into two sections depending on the dise characters of the flower. Sect. I-Pachydiscus and Sect. II Odontodiscus. Most of the Indian repre-

[^0]'Table 1-Treatment of Sabiaceae under different orders by different authors

sentatives of Sabia belong to Sect. Odontodiscus. Another revision is by Beusekom (l.c.) of Meliosma Bl. He divided the genus into two subgenera, 4 sects, 2 subsects and 2 series. These are very much detail and comprehensive taxonomic study which are of immense importance to other workers at present.

Palynological information on the family Sabiaceae, so far available, is meagre. Chen (l.c.) in his revision of the genus Sabia Colebr. described for the first time the pollen grains of 6 species. Further available information on pollen morphology of the family comes from Erdtman (1952), Ikuse (1956), Guinet (1962), Huang (1967), Palacios (1968), etc. All these casual informations were based on very few samples. First detail information comes from Muller (1971). He investigated about 25 species of Meliosma and could find only minute difference and suggested the necessity of detail work covering as much species as possible from the family. Considering all the above mentioned taxonomic discrepancies and inadequate palynological informations, the present investigation was carried out in order to find out affinities and relationship of the family and to interpret the systematic ambiguities on pollen morphological characters.

PHYTOGEOGRAPHICAL NOTES AND FOSSIL RECORDS

The family Sabiaceae is characteristic of certain tropical and subtropical regions of the Old World, having no representatives in Africa, Madagascar, Australia, Polynesia and the New World (Map-1). Phytogeographical history reveals that Sabia Coblebr. is mainly confined to the Indo-Malaysian and Indo-Chinese regions. Chen (1.c,) mentioned that Sabia reached its highest development in China. He tabulated 36 species and 9 varieties from C'hina with maximum in Southwest province Yunnan, where 21 species

Map. 1-World distribution of Sabiaceae [After Beusekom (1971) and Heywood (1978)].
are now known. More than half of the now known species of Sabia are confined to China. Present record for Indid is 10 species. Ten species occur in Burma, Japan, Formosa, Indochina, Thailand (Siam), the Malay peninsula, Sumatra, Java, Borneo, the Philippines and Moluccas. New Guinea and Solomon Jslands are represented by one or two species. In Malay Archipelago including Philippines the genus is not strongly represented. Most of the Indian species of Sabia are repor ted from temperate and tropical Himalayan region. From Peninsular India only one species is reported. Hooker f. (l.c.) in "The Flora of British India" included 10 species of Sabia, native of tropical and temperate India. Hara (1966,1971) reported 4 species from Eastern Himalayas. Santapau et al. (1973) mentioned the occurrence of 10 species in India of which Sabia canipanulata from temperate Himalaya and S. malabarica from South Indian hills are common. Two most widely distributed species are Sabia limoniacea and S. parviflora. The former extends from north India to Burma, Siam, Malay peninsula, Sumatra, Yunnan and includes its var. ardisioides Chen to Kwangsi, Kwangtung, Hainan to Hongkong in China. The latter extends from northern India to Burma, Yunnan, Kweichow, Kwangsi, Indochina and Borneo and includes its var. harmandiana (Pierre) Lecomte to Yunnan, Indochina, Siam and Borneo. A point to be mentioned here that India is completely devoid of the representative of the sect. Pachydiscus (sensu Chen, l.c.).

Meliosma, the largest genus of the family is represented by 100 species (sensu Arry Shaw, l.c.) and number of infraspecific taxa, is distributed in tropics and subtropics of the world. Approximately 35 species occur in Mexico, Central America, the West Indies and S. America. The remaining three fourths of the proposed species are characteristic of the Indo-Malaysian and Indochinese region. The world generic range is from Northern India down to Ceylon in east and in southeast to Korea, Japan, Malaysia and New Guinea. Beusekom (1.c.) in his revision of S. E. Asian Meliosma (American sect. Lorenzanea excluded) reduced 100 previously recongised species into his 15 species under 2 subgenera, 4 sections, 2 subsections and series arid several subspecies with number of local races. Beusekom (l.c.) came to a conclusion that both the subgenera have bicentric origin and originated with number of unrelated genera (homologous). Hence they must have originated in the same period and under the same physiological and climatological conditions. Subsect. Simplices (7 species) of subgenus
 Malesia, and subsed. Pimbatae (5 pecies) is distributed never W. Malesia (N. Borneo, V. \& (. Sumatra) with only I species extending far into continental Maia and Li, Materaia. Sect. Kingsboroughia of subgenus Kingsboroughian (3 species) is distribued over S. J. and Contral (hina (2 spp.) and Sect. Hendersonia is mpesented in W. Madesia woll 1 species.
 Bedsegom, lec.) in India. ()n the other hand seet. Simplices as well is sect. Pimatae are well iepresented in S. India, Bastem India and a few in Wearern India. Van Steens (1962) inchaded Melinsma under his 'Amphiltans pacifie gencra'. He reonded about 50 species as West Pacific (Indo Malaysian) extending from (ievton 10 Korca, Formosa and New Gminea and 12 species as List Pacilic (bopiral Smerican) extendeng from Mexico to Brazil.

Goov (1964) designated the Sabiaceare as the discombinuous family of Angiosperms and described under his - "Camilies of America and Lutasia and/or Austratasia". Cann (1944) described the family as a disjuncted lamily between America and Asia. Out of 11 species of Mclosma in Indo-Malaya, 5 species predominate in Himalayas, 2 species in Westem Peninsula and 4 species from Malay Peninsula.

Fyson (1932) in his Flota of South Indian hill stations reported 2 species of Mcliosma, M. wightii Planch. From Westen Ghats, Coorg, Mysore, northwards to Bombay ated southwards to Ceylon and M. arnotliana Wight. from Niggiri, Western Ghats, Coorg, ctc. to Bombay, Manipur, Burma and Ceylon.

Hara (I.c.) and Ohashi (1975) reported 3 species of Meliosma from Eastern Himalaya. Santapau el al. (I.c.) reported 9 species of Meliosma in India of which M. dilleniifolia (Wall. ex WI. \& Arn.) Walp., distributed almost throughout Himalayas, M. microcarpa (Wt. \& Arn.) Graib. from Khasi hills, Manipur and Peninsular India and M. pungens (Wall. ex WI. \& Arn.) Walp. from subtropical and temperate Himalayas are common.

Palaeobotanical literature so far at hand reveals rather abundant record of fossil Sabiaceac mostly from the genus Meliosma. These records, almost all, refer to fossils from the Tertiary Period, viz. from the Lower Eocene up to far into the Pliocene, only few being of Quaternary age. All the localities of fossil Meliosma are situated in the northern hemisphere, outside the tropics and often up to rather high latitudes. Study of fossil members might add a valuable palacobotanical dimension to the taxonomic and distributional picture of this genus. Chaney and Sanborn (1933) reported fossil remnants of Meliosma for the first time from W. America. Most of the fossils are organ genera represented by fossilized endocarp and leaf imprints. No flowess or reliable pollen data are at hand up till now. One or two fossilized wood ascribed to Meliosma has been reported but these need confirmation. Sometimes these fossil members have been found to occur in assemblages which are more of a heterogenous floristic composition, for instance tropical genera as Cinnamomum, Meliosma and Diospyros and some temperate genera as Ulmus, Prunus, Acer, etc. In such cases it is hard to analyse the floristic composition and probable climatic conditions of the past under which these flora lived, because such gensra cover several climatic zones. Up till now three tentatively placed endocarp and about 40 leaf impressions have been described, of which Meliosma aesculifolia Chaney \& Sanborn, M. californica Berry and M. cantiensis Reid \& Chandler are the endocarp organ genera, and M. cuneata (Newb.) Berry, M. curopea (i. \& E. M. Reid, M. myriantha Sicb \& Chandler and M. goshenensis Chancy \& Sanborn are important leal impressions. Cians (I.c.) reporled 133 individuals of Meliosma goshenensis (ihaney \& Saborn from

Goshen flora. Beusekom (1.c.) mentioned that most of the fossil endocarps described so far doubtlessly belong to subg. Fingsboroughia scet. Kingsboroughia where as none could relate to sect. Hendersonia. From subg. Meliosma not only endocarps but leaf imprints are also abundant. Out of all endocarps referable to sect. Meliorma, none of sect. Lorenzanea (sensu Beuserom, l.c.) have yet been found. The fossil leaves on the other band ase referable to both sect. Meliosma and Lorenzanea but not to sect. Meliosma subsect. Pinnatac. On the basis of palacobotanical as well as physiognomical evidences Beuserom (1.c.) consideted the Arcto Tertiary concept as advanced by Wolfe (1969) and concluded-"its distributional history would then resemble that of sect. Kingsboroughia which I also assume to have had its origin in Asia and expanded its range via Beringia to North America with two differences, viz. (i) that its migration took place at later period of the Tertiary and (ii) that it maintained a foothold in Mexico (M.alba) as relict of this migration."

MATERIALS AND METHODS

Polliniferous materials were collected from the herbarium sheets of the Central National Herbarium (CAL). For identification of some disputed specimens photographs of type materials from Kew Herbarium and microfiches have been consulted. Nomenclature followed after Chen (l.c.) and Beusekom (l.c.). Pollen slides were prepared by acetolysis method (Erdtman, l.c.) and have been deposited in the Sporotheca of Palynology Laboratory, C. N. H. The reading corresponds to the mean of 25 measurements of pollen grains for each material and were taken from acetolysed nonchlorinated grains. Infra specific variations for Polar axis (P) and Equatorial axis (E) measurements were analysed statistically which are of very narrow range. Standard deviation (σ) for P and $E(n=25)$ is insignificant and range from $1.2-2.5 \mu \mathrm{~m}$. Photomicrographs were enlarged $\times 1600$.

OBSERVATION AND DISGUSSION

Pollen isopolar, 3-zonocolporate, medium-sized, prolate or subprolate in cquatorial view, either compressed oval or elliptic oval in meridional forms. Circular, subangular or lobate in polar view. Ectoapertures (Colpa) distinct either narrow slit.like or broad tapering and extended up to poles. Aperture membrane generally smooth, rarely granulated, when granulated, granules either in a definite orientation or randomly distributed. Endoapertures (OS) distinct except in few where equatorial outline not so clearly demarcated. Generally large, lalongate, rectangular type of circular or indistinct with rare exception. Different aperture types mel in this family are shown in Text-fig. 1 Exine ornamentation coarsely or finely reticulate, rarely obscure. Reticulation homobrochate or heterobrochate. When heterobrochate, firier around apertures or coarset at apocolpium than mesocolpium. Sabia represents comparatively more fine exine ornamentation than Meliosma in general. One species of Sabia has regatively reticulate and another with obscure exine ornamentation.

Exine layers differentiated into Tectum, Columella and Endexine. Foot layer than Columella layer and frequently equal, semitectate, with distinct or fused Columella heads. Columella layer distinct with distinct Columella heads and unbranched, which stands on thin and uniform layer of endexine, or Columella layer forms a compact, thick and firm tectum layer by fusion of the Columella heads. Endexine distinct, thint

$$
\overbrace{a}^{\|}
$$

R

1

Text-fig. 1
and uniform layer or very thick in the apertural area in both the genera to form costae colpate type of aperture. Detailed pollen morphological characters of individual species studied are given in table-2.

It is evident that polar axis range in most of the species of Sabia is from $25-32 \mu \mathrm{~m}$ but in S. limoniacea it is 21-26 $\mu \mathrm{m}$. In equatorial axis the general range is from 18.5$25 \mu \mathrm{~m}$ whereas in S. limoniacea it is $15.5-18.5 \mu \mathrm{~m}$. So, S. limoniacea represents the smallest range in the genus. Pollen grains are subprolate or prolate in shape, having compressed oval form mostly but sometimes both compressed oval and elliptic oval forms are available simultaneously. In S. japonica it is almost circular. In polar view all the species of Sabia have subangular shape with the exception in S. lanceolata and S. purpurea being circular in polar view. Exine thickness is uniform throughout. Exine generally is of $1.5-2 \mu \mathrm{~m}$ thickness but in S. yunnanersis, S. limoniacea and S. lanceolata is below 1.5 $\mu \mathrm{m}$, or $1.5 \mu \mathrm{~m}$ thickness. Tectum thickness ii general range from $0.75-1 \mu \mathrm{~m}$ with the exception in S. limoniacea and S. lanceolata being $0.5 \mu \mathrm{~m}$ thick. Tectum supported by short distant columella of about $0.5 \mu \mathrm{~m}$ high which stands on a thin and uniform layer of endexine. Columella height decreases from mesocolpal region towards the apertural area in S. gracilis and S. lanceolata. Sculptural pattern in the genus is finely reticulate in general but in S. japonica, S. paniculata and S. parviflora it is coarsely reticulate and in S. gracilis it is negatively reticulate and obscure in S. lanceolata. Lumina size range from $1-2 \mu \mathrm{~m}$ in general but in S. limoniacea it is $1 \mu \mathrm{~m}$ or less and in S. gracilis lumina heterobrochate being $1 \mu \mathrm{~m}$ towards aperture and 1-1.5 $\mu \mathrm{m}$ at mesocolpium. Ectoaperture in general is long slit extending upto poles and without costa but in S. leptandra and S. limoniacea it is costac colpate. Occasional long tapering colpae have been observed only in S. yunnanensis from different localities. Endoaperture distinct and lalongate type, generally rectangular with round ends. In some of the species endoaperture lalongate rectangular type with indistinct or faintly demarcated side wall. Endoaperture lalongate with tapered equatorial end is observed in some materials (not always) of S. yunnanensis.

Table 2-Summary of selected pollen morphological features of Sabiaceae

Genus and Species	Shape	Outlinc in pol. view	$\frac{\mathrm{P}\left(/ \mu_{\mathrm{m}}\right)}{\text { Mcan }}$	$\frac{\mathrm{E} \mu_{\mathrm{m}}}{\text { Mcan }}$	$\begin{aligned} & \mathrm{P} / \mathrm{E} \\ & \text { ratio } \end{aligned}$
1	2	3	4	5	6
Sabia campanulata	Pro.	Subang.	$\frac{25-30}{29.1}$	$\frac{21-27}{23.4}$	1.25-1.40
gracilis	Pro, sph.	Subang.	$\frac{25-27.5}{26.7}$	$\frac{21-23}{21.9}$	1.23-1.24
japonica	Sph.	Subang.	$\frac{28-31}{29.65}$	$\frac{25-28.5}{26.5}$	1.03-1.20
lanceolata	Pro.	Cir.	$\frac{29-32}{30}$	$\frac{21-25}{23}$	1.21-1.63
leptandra	Pro. sph.	Subang.	$\frac{28-34}{30.33}$	$\frac{22-27}{23.5}$	1.03-1.36
limoniaca	Pro. sph.	Subang.	$\frac{21-26}{22.25}$	$\frac{15.5-18.5}{16.5}$	1.31-1.73
paniculata	Pro.	Subang.	$\frac{26-31}{29}$	$\frac{22-27}{23.5}$	1.40-1.53
parviflora	Pro.	Subang.	$\frac{29-32}{29.95}$	$\frac{19-22.5}{21.15}$	1.45-1.52
purpurea	Pro.	\pm Cir.	$\frac{27-32}{29.05}$	$\frac{20-23}{21.35}$	1.21-1.60
yunnanensis	Pro. sph.	Subang.	$\frac{25-30}{28.85}$	$\frac{19-25}{22.4}$	1.20-1.35
Meliosma buchnanaefolia	Pro.	Lobate	$\frac{25-27}{25.7}$	$\frac{19-21}{19.53}$	1.25-1.34
colletiana	Pro.	Subang.	$\frac{24.5-27.5}{25.6}$	$\frac{18-21}{20.2}$	1.21-1.6
dentata	Pro. sph.	Lobate	$\frac{29.5-32.5}{31.2}$	$\frac{22.5-25.5}{23.2}$	1.23-1.5
dilleniifolia ssp. dillenifolia	Pro.	Semicir.	$\frac{21-24}{22.75}$	$\frac{17-21}{19}$	1.12-1.29
ssp. cuneifolio	Pro.	Lobate	$\frac{26-29}{27.2}$	$\frac{17-20}{17.8}$	1.13-1.5
ssp. tenuis	Pro.	Lobate	$\frac{27-28.5}{27.4}$	$\frac{18-20}{18.65}$	1.45-1.5
lancoolatu var. lancoolata	Pro. sph.	Semilobate	$\frac{25-29}{28}$	$\frac{19-22}{20.5}$	1.22-1.51
lancifolia	Pro.	Lobate	$\frac{19-23}{22}$	$\frac{17-20.5}{18}$	1.13-1.5
lepidota ssp. squamulata	Pro. sph.	Lobate	$\frac{30-36}{33.25}$	$\frac{22-25}{23.2}$	1.41-1.56
multiflora	Pro.	Lobate	$\frac{28-32}{30.3}$	$\frac{21.25}{23.5}$	1.17-1.6
myriantha ssp. myriantha	Pro.	Lobate	$\frac{29-94}{31.35}$	$\frac{22-25.5}{23.25}$	1.13-1.54
nitida	Pro.	Lobate	$\frac{27.5-30.5}{29.5}$	$\frac{22-25}{23}$	1.13-1.5t

Thickness		Sculpture			Ectoap.		Endoap.	Remarks
Tec.	Col.	Endex.	Pattern	Lumina size	Type	Widt		
7	8	9	10	11	12	13	14	15
0.75	0.25	0.5	f. ret.	0,5-1	Slit	2	Lalong.	Colpa constricted at eq.
1	0.5	0.5	neg. ret	(0.5)-1-1.5	Slit	2.3	Lalong.	Ret. finer around aperture. Gol. heads distinct.
0.75	0.25	0.5	rct.	1-2	Slit	2	Lalong.	Col. with distinct heads, particularly at poles.
0.5	0.25	0.25	\pm psilate	-	Slit	2.5	Lalong.	Col. indistinct.
0.75	0.25	0.5	f. ret.	0.5-1	Slit	2	Lalong.	Costae colpate.
0.75	0.25	0.5	f. ret.	0.5-1	Slit	2	Lalong.	Colpa constricted at eq.
0.75	0.25	0.5	ret.	(0.5) 1-1.5	Slit	2.5	Lalong.	Heterobrochate, ret. finer towards aperture.
1	0.5	1	ret.	$1-1.5(-2.5)$	Slit	2.5	Lalong.	Heterobrochate, ret. coarser at poles (2-2.5 $\mu \mathrm{m}$.)
0.5	0.25	0.5	f. ret.	0.5-1	Slit	2-3	\pm Cir.	Col. indistinct.
0.5	0.25	0.25	f. ret.	0.5-1	Tap.	2.5-3	Lalong.	In one mat. endoap. tap. at eq. margin.
0.75	0.25	0.5	f. ret.	0.5-1	Slit	1.8	Lalong.	Col. indistinct at mesocolpium.
0.75	0.25	0.5	obs./f. ret.	0.2 or less	Slit	$2(1.5)$	Lalong.	Colpa constricted at eq. endoap. margin indistinct.
1	0.5	0.75	ret.	1-1.2 (士2)	Slit	2	Lalong.	Lumina linear at poles.
0.75	0.25	0.5	f. ret.	0.5-0.75	Slit	2	Lalong.	Endoap. margin indistinct. at eq.
0.5	0.25	0.5	f. ret.	0.5-1	Slit	2	Lalong.	- -
0.75	0.5	0.5	f. ret.	0.5-1	Slit	2	\pm Cir.	Mat. from Japan show lalong. endoap.
1	0.5	0.5-1 (1)		1-1.3	Tap.	3	Lalong.	Ex. thicker at poles (Nex. $\left.1 \mu_{\mathrm{m}}\right)$. Col. heads distinct at poles.
0.5	0.25	0.5	f. ret.	0.5-1	Slit	1.8	Lalong.	-_
1	0.5	0.5	ret.	(0.5)-1-2	Tap.	3	Lalong,	Col. heads distinct, ret smaller around ap.
1	0.5	0.5	ret.	1-1.5	Slit	2	Lalong.	Col. heads distinct, at poles.
1	0.5	0.5	f. ret.	0.5-1	Slit	2	Lalong.	Col. heads distinct a poles.
1	0.5	0.5	ret.	1-1.5	Tap.	2.5-(1	, Lalong.	Colpa constricted a eq.

Table 2

1	2	3	4	5	6
obtusifolio	Pro.	Lobate	26-29	21-24	1.16-1.28
			27.85	22	
pinnata	Pro. sph.	Subang.	27-30	18-21.5	1.37-1.52
ssp. finnata			28.15	19.55	
pinnala ssp. pinnata	Pro. sph.	Lobate	25-27.5	18-20.5	1.21-1.5
var. arnottiana			25.85	19.65	
polyptera	Pro.	Lobate	28.5-31	18.5-23.5	1.10-1.5
			30	21.5	
simplicifolia ssp. simplicifolia	Pro. sph.	Subang.	26.5-30	18-24	1.10-1.58
			27.25	22.5	
ssp. pungens	Pro.	Lobate	30-32.5	22-24	1.28-1.40
			31.45	23.3	
ssp. rigida	Pro.	Lobate	29.5-32.5	21.5-24	1.3-1.5
			31	23	
wallichii	Pro. sph.	Lobate	25-27	18-20.5	1.23-1.5
			25.6	19.8	
wightii	Pro. sph.	Lobate	26-28.5	21-23.5	1.13-1.39
			27.5	22.5	

In the species of Meliosma the polar axis range is from $25-32 \mu \mathrm{~m}$ but in M. dilleniifolia it is $21-24 \mu \mathrm{~m}$. Equatorial axis in general range from $18-25 \mu \mathrm{~m}$ with the exception in M. dilleniifolia and M. myriantho where it ranges from 17-21 $\mu \mathrm{m}$. Subprolate or prolate pollen grains are common for the genus. Majority with elliptic oval outline and a few having compressed oval in meridional form. Polar view for majority of the species in this genus is lobate but subangular in M. simplicifolia, M. myriantha, M. lanceolata and M. pinnata and subangular or semicircular in M. dilleniifolia. Exine is of uniform thickness throughout in mesocolpium and poles except in M. wightii where it is thicker at poles. Exine in gencral is $1.5-2.5 \mu \mathrm{~m}$ thick except in M. dilleniifolia from Kumaon (U. P.) where it is $\pm 1 \mu \mathrm{~m}$ thick. M. dilleniifolia from Simla and Chakrata (Jaunpur div.) have $1.5 \mu \mathrm{~m}$ thick exine. However, exine thickness of pollen grains of M. dilleniifolia does not exceed $1.5 \mu \mathrm{~m}$. Tectum is always thicker than the columclla layer except M wallichii and M. pungens where tectum layer is equal to columella layer. Below the tectum layer there is a uniform layer of short, distinct columella layer. Columella heads are distinct in majority of the species studied but fuse to form flat and fine reticulation in mesocolpium and with distinct columella heads leading in coarse reticulation at poles in M. lanceolota. Sculptural pattern in the genus is either coarsely or finely reticulate. Exine obscure or \pm microreticulate in M. dilleniifolia and M. colletiana. In reticulate pollen grains, reticulation is generally homobrochate, but heterobrochate having finer
(Contd.)

7	8	9	10	11	12	13	14	15
1	0.5	0.5	ret.	1-1.5	Slit	2	Lalong.	Endoap. tap. eq. margins.
1	0.5	0.5	f. rel.	0.5-1	Slit	2	Lalong.	Ciol. heads distinct at poles.
1	0.25	0.5	f. ret.	0.5-1	Slit	2.8	Lalong.	Endoap. tap. at eq. margin. mat. from Sri Lanka are larger $(30 \times 22.5 \mu \mathrm{~m})$.
1	0.25	0.5	ret.	1-1.5	Tap.	3	Lalong.	Colpal membrane gr.
1	0.5	0.5	ret.	1	B. Slit	2.3	Lalong.	Colpal membrane pro-
1	0.5	0.5	ret.	1-2	B. Slit	2.5	Lalong.	granules. Colpal membrane provided with single row of granules.
0.75	0.5	0.5	ret.	1-2	Slit	2	Lalong.	Col. distinct at poles.
1	0.5	0.5	ret.	1-1.25	B. Slit	2.5-3	Lalong.	Some gr. present in endoap. area.
1	0.25	0.75	ret.	1-2	Tap.	3	Lalong.	Endoap. very large, nearly fusing each other.

Abbreviations used: ap.-Aperture; B. slit-Broad slit; Cir.-Circular; Col.-Columella; E.-Equatorial diameter; Ex.-Exine; Endex.-Endexine; Endoap.-Endoaperture, Ectoap.-Ectoaperture, eq.-equator; f. ret.-finely reticulate ; gr.-granulose; Mat.-material, Neg. ret.-Negetively reticulate, Nex.-Nexine; obs.-obscure;P.-Polar axis length; Pol.-Pole;Pro.-Prolate; Pro. Sph.—Prolate-spheroidal; ret.-reticulate; ssp.-Subspecies; sph.—Spheroidal; Subang.-Subangular; Tap.-Tapering; Tec.-Tectum; var.-variety.
reticulation towards aperture in M. squamulata and reticulation coarser at poles than mesocolpium in M. wightii and M. lanceolata. Colpa long, narrow or broad slit-like in majority of the species but broad tapering in M. polyptera, M. nitida and M. squamulata. Colpa generally uniform but constricted at equator in M. nitida and M. colletiana. Granules on colpal membranf, though not a constant character for the genus, are observed in M. simplicifolia, M. pungens, M. arnottiana, M. polyptera and M. squamulata. Granules, when present, are either generally randomly distributed on colpal membrane or oriented in a single row in M. simplicifolia and M. pungens. M. myriantha differs from all other species of Meliosma having operculum-like thickened patch on either side of colpal breadth at equator.

From the above observation it is evident that Sabiaceae is a stenopalynous family. Homogencity in palynological features reveals that circumscription of the familv (sensu Bentham \& Hooker f.) together with those genera is quite a natural grouping. Though Sabia and Meliosma have many common palynological chasacter, with overlapping data and finer details, exine in Sabia is thinner and with comparatively finer reticulation than Meliosma in general. It has also been observed that pollen grains in Meliosma is lobate in polar view in most of the cases whercas it is generally circular or subangular in Sabia. Out of 21 species studied from Meliosma, 16 species have lobate outline. Such lobate type of pollen grains with coarse exine ornamentation may be designated as the Meliosma
pollen type proper. But it would not be wise to treat these characters only in favour of creating a new and independent lamily

Pollen morphology of some other families which are discussed elsewhere as the related family by the taxonomists have also been considered with the view to better understanding of the systematics of the family Pollen grains of the families like Hippocastanaceac, Menispermaceac, Sapindaccac, Mclianthaccac, Aceraceae, Schizandraceae, Lardizabalaccac are different as ieferred from literature or from personal observation Pollen grains of Hippocastanaceac are comparable to Sabiaceac in granulated colpal membrane only, which is rather not a common feature in Sabiaccac. Granulated colpal membrane is also observed in some taxa of Burscraccae (Mitra el al., 1977), Leguminosae (Mitra el al., 1979-80) and in Resedaccac (Mitra, 1976). But exinc, aperture and gencral form are quite different. Lardizabalaceac comparable to Sabiaceac by granules on colpal membrane and shape ouly. Pollen grains of Platea and Ottoschulzia of this family are comparable to sabiaccous pollen grains in shape, aperture and exine characters but other genera are quite different. Some taxonomists placed the family next to or prior to Anacardiaccae. Pollen morphology is also suggestive to keep the family in approximation with Anacardiaceac. Pollen grains of Gluta and Melanorrhoea are similar with sabiaceous pollen grains in general shape, size, P / E ratio, exine and aperture characters. Rectangular type of endoaperture in Gluta is a common characteristic feature in Sabiaceac. Slit-like colpa in "Wrayi type" and "Laxiform type" (BaKSI, 1976) with median constriction is also evidenced in Sabiaceae. Lalongate rectangular type of endoaperture, exine and single row of granules on colpal membrane in species of Buchnanania and Schinus reminds some pollen type in Sabiaceae. Other species studied from Anacardiaceac differ from Sabiaceae in striate or striatoreticulate exine.

Other biosystematical data of the palynologically related families

Anatomically Sabia differs from Meliosma in number of characters like mesophyll cells in leaves, pericycle in axis, xylem fibre and xylem rays, etc. Other important anatomical features are similar. So, anatomical feature also does not strengthen to place them in two different families. For interfamiliar relationship, Heimsch (1942) and others suggested the Aracardiaceae as the closest family anatomically. Embryological features of Sabiaceae are common as in several dicotyledonous families. Johnson (1977) placed the family in Sapindales together with Anacardiaceae on embryological characters.

Cytological reports so far at hand [Darlington \& Wylie (1955), Gajapathy (1962), Borgmann (1964), Funabiki (1958), Raju (1952), Sugiura (1936) and Federov (1969)] are insignificant and mostly from diflerent species of Meliosma. Chromosome number so far known is $n=16$ and $2 n=32$ for Meliosma and $2 n=24$ for Sabia. But Mehra et al. (1969) reported $n=8$ in M. wallichi and in other four species they reported $n=16$. The constancy in chromosome number reveal that the taxa are stable ones and speciation caused by structural changes in chromosome. Members of the Anacardiaceac like Rhus, Sorindeia, Spondias, etc. reported to have $2 \mathrm{n}=32$ chromosomes [Mangenot \& Mangenot (1962), Banerjee (1936) and Simmonds (1954)]. Other members of Sapindaceac have $2 n=28$ or 32 mostly. For making a critical relationship between the families a detail karyotype analysis is necessary. It is impossible to make any further conclusion for the family from cytological point of view.

CONCLUSION

From the foregoing discussion it is apparent that retention of the family Sabiaceae in Terebinthales/Sapindales complex and near to Anacardiaceae is justified. However, the circumscription of the order Terebinthales and Sapindales is different from author to author; whatever may be the placement of the family, either in Terebirthales or in Sapindales, it is quite frequent that the taxonomists treat Anacardiaceac and Sapindaceae together in the same order irrespective of arrangement of the families.

Palynological observation and comparative analysis of morphological and taxonomical characters are suggestive to draw the following conclusions:
-Pollen morphological data provide no support for introducing two separate families Sabiaceac and Meliosmaceae.
-Specific and even generic seggregation is not possible for the two genera palynologically (at least with the light microscopic study).
-Pollen morphological features remind the phylogenetic relationship as proposed by Bentham \& Hooker f. (1 c.), Wallich (l.c.) \& Planchon (1.c.).
-Treatment of the family adjacent to Anacardiaceae is justified.

ACKNOWLEDGEMENT

We are thankful to the Deputy Director and Keeper, Central National Herbarium, Botanical Survey of India, Howrah for providing materials and facilities.

REFERENCE

Airy Shaw, H. K. (1973). In Whlis J. G.-A dictionary of fowering plant and ferns. 8th Revised ed. Cambridge Univ. Press, Cambridge.
Baksi, S. K. (1976). Pollen morphology of the genera Gluta Linnaeus and Melanorrhoea Wallich (Anacardiaceae). The evolutionary significans of the exine (ed. I. K. Ferguson \& J. Muller) : 379-405. Academic Piess. London.
Banerjee, E. A. K. (1936). Chromosome number in Spondias mangifera Willd. Sci. Cull., 1 : 653.
Benson, L. (1957). Plant classification. D. C. Heath \& Co. Boston.
Bentham, G. \& J.D. Hooker. (1862-1883). Genera Plantarum. Vol. 1. (Connaraceae-430, Sabiaceae-414).
Beusekom, Van C. F. (1971). Revision of Meliosma (Sabiaceae) section Lorenzanea excepted, living and fossil, Geography \& Phylogeny. Blumea, 19 (3) : 355-529.
Blume, C. L. (1851). Museum botanicum Lugduno-Batavum. Vol. 1 : 368-370.
Borgmann, E. (1964). Anteil der Polyploiden in der Flora des Bismarcksgebirges von Ostneuguinea. Zeit.f. Bot., 52 : 118-172.
Cain, S. A. (1944). Foundations of plant geography. New York \& London.
Chaney, R. W. \& Sanborn., E. I. (1933). The Goshen flora of West Central Oregon. Carnegie Inst. Wash. Publ. 439.
Chen, L. (1943). A revision of the genus Sabia Colebrooke. Sargentia, 3 : 1-75.
Cufodontis, G. (1939). Revision der chinesischen Meliosma. Arten. Oesterr. Bot. 2. 88:246-268.
Dahlgren, R. (1975). A system of classification of Angiosperm. Bot. Notiser, 128 : 119-147.
Darlington, C. D. \& Wylie, A. P. (1955). Chromosoine atlas. George Allen \& Union Ltd., London.
Engler, A. (1964). Syllabus der Pflanzenfamilion Band II. Sabiaceae. Gebrii der Borntraegar, Berlin, Nikolassee.
Erdtman, G. (1952). Pollen morphology and plant taxonomy-Angiosperms. Almquist \& Wiksell. Stockholm.
Federov, A. (1969). Chromosome numbers of flowering plants. Academy of Sciences of USSR, Leningrad.
Funabiki, K. (1958). Distribution and polyploidy of Angiosperm-I. Kromosome, 37-38 : 1253-1267.
Fyson, P. F. (1932). Flora of South Indian hill stations. Vol. I. Today \& Tomorrow's Printers \& Publishers, New Delhi.
Gajapathy, C. (1962). Cytological observations in some dicotyledons. Sci. Cult., 28 (8) : 37.5-376.
Good, R. (1964). The geography of flowering plants. Longmans, New York.

Hara, H. (1971). Flora of Eastorn Himalayas. 2nd report, Univ. ol Tokyn Prems, Tukyen,
Hermsch, C. (1942). Comparative anatomy of the secondary xylem ol' the 'Ciminalea' and "Prembultahes' of Wettstein with reference to taxonomic groupings. Lilloa, $\mathbf{8}: 83$-198.
Heywood, V. H. (1978). Flowering plants of the world. Sabiaceac. Oxford Univ, I'ras, I, ,mitm.
Hooker, J. D. (1376). The Flora of Brilish India. Vol, II. L. Recve \& Co., Lomion.
How, F. C. (1955). Revision of the Chinese Meliorma. Acta. Phyotax. Simicin, $3: 421.122$.
Huang, T. C. (1967). Pollen grains of Formosan plants 11. Taikana, 13:15-110.
Hutchinson, J. (1926). The families of flowering plants. Dicotyledons. (1st. cel.) Macmillan ev (in, Lomblon,
Ikuse, M. (1956). Pollen grains of Japan. Hirokawa Publishing Co., Tokyo.
Johnson, A. M. (1930). The taxonomy of flowering plants. Reprinted ed. 1977. I. Gramer, Germany
Mangenot, S. \& Mangenot, G. (1962). Enquete sur les nombres chromosomigurs dans whe eallectum do especes tropicales. Rev. Cyt. et Biol. Veg., 25 (3-4) : $411-147$.
Mehra, P. N. \& Khosla, P. K. (1969). In IOPB Chromosome number report XX. T'uxon, 18:21'-z21.
Mitra, K. \& Mitra, S. N. (1976). Pollcn morphology in relation to taxonomy and plant geopraphy of Resedaceac. Bull. bot. Surv. India, 18 (1-4): 194-202.
Mrtra, K., Mondal, M. \& Saha, S. (1977). The pollen morphology of Burscraccac. Cirana, $16: 7$:-7\%.
Mrtra, K. \& Mondal, M. (1979-80). Pollen morphology of exstipellate and stipellate Medysareae 1)(. (Leguminosae). Abstract. Vth. International Palynological Conferenco, Cambridge. Fiull paper ir Proce. Indian Acad. Sc. (In press).
Muller, J. (1971). In Beusekom, Van C. F.-Revision of Moliosma (Sabiaceac) section Lorcnzanea cxapted, Living and fossil, Geography \& Phylogeny. Blumea, Vol. 19 (3) : 355-529.
Ohashi, H. (1975). Flora of Eastern Himalayas. 3rd. report, Univ. of Tokyo Prcss, Tokyo.
Palacios, Ch. R. (1968). Morphologia de los granos de pollen de arboles del Estado de Morclos. Ar. Err. Nac. Cienc. Biol. Mexico, 16 : 41-169.
Planchon, J. E. (1855). Affinities et synonymie de quelques genres nouveaux on peu connus. Ann. Sc. Nat. III, Bot., 3 : 292-296.
Raju, M. V. S. (1952). Embryology of Sabiaceac. Curr. Sci., 21 : 107-108.
Santapau, H. \& Henry, A. N. (1973). A dictionary of flowering plants in India. Publication \& Information Directorate, C.S.I.R., New Delhi.
Simmonds, N. W. (1954). Chromosome behaviours in some tropical plants. Heredity, 8 (1) : 139-145.
Sugiura, T. (1936). A list of chromosome numbers in angiospermous plants. II. Proc. Imp. Acad. Tokyo., 12 (5) : 144-146.

Takhtajan, A. (1969). Flowering plants : Origin and dispersal. Oliver \& Boyd, Edinburgh.
Thorne, R. F. (1968). Synopsis of a putatively phytogeneric classification of the flowering plants. Aliso, 6 (4) : 57-66.
Van Steenis, C.G.G. (1962). The land bridge theory in Botany with particular reference to tropical plants. Blumea, 11 (2) : 235-542.
Wallich, N. (1824). In Roxbburgh's Flora Indica. $2: 308$.
Warburg, O. (1856). Sabiaceae in A. Engler \& K. Prantle's Die Naturlichen Pflanzenfamilien, Teil III. 5: 366-374.
Wettstein, R. V. (1935). Handbuch der systematischen Botanik. Franz Deutiecke, Wien.
Wolfe, J. A. (1969). Paleogene flomas the Gulf of Alaska region, U.S. Geol. Survey, open file report.

MATERIAL STUDIED :

Sabia campanulata Wall. India : Sikkim, Herb. Sulp. Kurz, CAL_97401;Tongloo, Dr. King's col. s.n. CAL-97402; N.W. Himalaya, Mackinnon, P.W.—s.n. CAL—97386 (20. 5. 1897); Darjeeling, Osmastan, B.B.-s.n. (31.5.1903); Bashahr, N. W. Himalaya, Lace, J.H.-893; Garhwal, Nathani, B.D.-47967: Chamta, N. W. Himal., Lace, J.H.-1733; NEFA, Kameng F.D., Panigrahi, G.-68+9; Arunachal. Rao, R.S.-10381; Nepal : Banerjee, M. L.-570253. S. gracilis Hemsl. China: Tungtge, Fl. of Kiweichow, Tsiaug. Y.-5072. S. japonica Maxim. C. China : Dr. Aug. Henry's col.--5421; 5421C; Dr. Aug. Menry's col.-.b02.2. S. lanceolata Coleb. India: Tripura, D. B. Deb-1693; Assam, Panigrahi, G.-11263; 22370; Kanjial_sn. CAL-97479; Abor expedition, J.H. Burkill-37021; 37469; Dr. Prain's col.-316; 1llegible no.-1.7. CDI.97459; Shillong, Joseph, J. - 48306; 48852; 48339; Sikkim, Dr. King's col. s.n. Cill. 97186 ; Bungladesh:

Sylhet, C. B. Clarks-42172; Burma: Shalik Mokim-8; 26; Capt. SM. \& Toppin, R. H.-1478. S. Ioftandra Hook. f. \& Th. India : Kalimpong, Gamble, J.S.-2694; Clarke, C.B. 26433C (b) ; Sikkim, King, G.…n.n.-. 1881; King, G.-s.n. CAI,-97422; Gamble, J.S.-7603; Smith, W. W.-502; Darjceling, Lace, J. H.2457. S. limoniacea Wall. India : Tripua, D.B. D)ch-27298; Mizoram, J.IB. Dely-31208; Mcghalaye, Khasi hills, JDH \& Th. s.n. CAL-97502; Nagaland, Dr. Prain's col. 626; W. Jengal, Jaincs, H. H, - 006 ; Bangladesh : Clarke, C. B.-18005; Chillagong, Khan, M.S.-827. S. pranculala Edgew. India : Sikkim, Rubu \& Rhomoo-3610; Haines, II.IL. 502; 11Irgible No.-358 (9. 1. 1876); King, G. s.n. (1869); Manipur,
 Kumaon, Strachey, R...-2; Dehra Dum, Gamble, J.S. 24075; Mackimon, P.W.-5.1.- (:AL, 9752?; 97524; Siwalik, N.W. Himalava, Das Parameshwar-122; Nepal: Burkil, 1.TL. 29516; (1907). S. paruiflura Wall.
 King, G.-s.11. (8. 1. 1876) : Assam, Debi valley-F. King, Downward-7990; Khasi hills, Collet, fl.-s.n.
 1918); Bhutan : Scngupta, G--1146; Bornco : Havilland, G.D.-1218. S. purpura Hook. f. \& 'ih. India : Sikkim. S. Kuzz, s.11. Herb, Sulp. Kurz. GAL-97429; Cave, G.H. s.n.-(12.3.1916); Khasi hills. Colett, H. s.n. CAL -97436 ; Kalimoong, Illegible s.n. CAL_97428; Assam, Gammie, G. A.-338; Clarke, C.B.-43378A; China : Dr. Aug. Henry's Col.-5265. S. yunnanensis Franch. C. China; Dr. Aug. Henry-5421; 6290; Yunnan, Plantac Formes tianac-15711, CAL_..97578; Flora of E. Tibet \& S. W. China, George Forest—4721 4707.

Meliosma buchnanaefolia Kurz. India : Khasi hills, Illcgible-s.n.; CiNL-97886. M. colletinna King. Burma : Badal Khan s.n. CAL-97906. M. dentata Urban, Mexico : Pringle, C. G.-6381, State of Morelos, C.AL-97958. M. dilleniifolia (Wall. ex W. \& A.) Walp. ssp. dilleniifolia. [M. dilleniifolia (Wall. ex. W. \& A.) Walp.] India : Kumaon, Colctt, H.-s.n. CAL-97592; Chakrata, NIL, CAL—97588; Simla, NIL, CAL97595; Bangladesh : Griffith—1027; Nepal: Puri, V.—646; Rao, R. S.-14132. M. dilleniifolia (Wall. ex W. \& A.) Walp. ssp. cuneifolia (Franch.) Jeus. Stat. nov. [M. cuncifolia Franch.] China : George Forest-23037, 21346. M. dillenïfolia (Wall. ex W. \& A.) Walp. ssp. tenuis (Maxim.) Beus. stat. nov. [M. tenuis Maxim.] Japan : Prov. Senanc. Tschonoski-1864; China : Hunan, Dr. Aug. Henry's Col.-7540, 6000. M. lanceolata Bl. var. lanceolata f. lanceolata [M. lanceolata Bl.] Mal. Peninsula : Griffith—s.n. CAL_97851; NIL, CiAL97854; Maingay, A.C.-361; Malacca : Ridley, H.M.-6341; Java : Forbes, H.O.-596, 1185 , 1218 ; Singapore : Kelantan Kuala Rek, Md. Hanif et al.-10190; Ridley, H. N.-1892, 347, 3876. M. lancifolia Hook. f. Malaya : Maingay, A. C. $-463 / 2$. M. lepidota Bl. ssp. squamulata (Hance) Beus. Stat. nov. [M. squamulata Hance] China : Herb. of Lingnan Univ. Lung. T, au et shan s.n. CAL—97937 (det.-E. D. Merrill). M. multiflora Merrill, Philippines :Luzon, Alcasid et al. 1623, 1834 (det.—E. D. Merrill); Sulit, M.D. 7470 ; Santos, J. K.-31783; Merrill, E.D.-1751; Curran et al.-18118, Elmer, A.D.E.-8819. M. myriantina Sieb. \& Zucc. ssp. myriantha Sieb. \& Zucc. [M. myriantha Sieb \& Zucc.] China : Hainan, Tsang Wai Tak-902; Dr. Aug. Henry's col.-5863, 5929, 5849A, 7550; Tsusima island, St. of Korea, Wilford, C.-1859, s. n. CAL_97899; Tsiang tan-365. M. nitida Blume, Mal. Peninsula : Rev. Father Scortechini-s.n. CAL—97823, CAL97824; Dr. King's Col.-2707, 1051, 4153, 5661, 5657, Perak, Wray L. (Jr.) -3399, 4048; Maingay, A.C.-461; Penang, Curtis, C.-2836; Kunstler, H.-5301, 6944, 3260 ; Singapore : Ridley, H.N.-6342, s.n.-CAL-97872, s.n. CAL-97873. M. obtusifolia Kurg \& Urban, America : Sintenis, P.-4039, 5326 (det.-I. Urban). M. pinnata (Roxb.) Walp. ssp. pinnata [=M. pinnata Roxb.] India : Assam, Herb. of E. India Company, NIL, CAL-97716; Panigrahi, G.-9592, 9619; Mann, G.-s.n.-CAL-97750; NIL, CAL97757; Manipur, George Watt.-6916; Arunachal, Deb. D. B.-25782; Meghalaya, Rao, A.S.-38728; Sikkim, Biswas, K.-9235, King, G.-865, 187; Haines-531; Nagaland, Hook, M. A.-772; Bhutan : King, G.-187; Bangladesh : Chittagong, Dr. King's col.-443. M. pinnata (Roxb.) Walp. ssp. arnottiana var. arnottiana [M. arnottiana Wight] India : Nilgiri, Scbastine, K.M.-3173; Annamalai, Barber, C.A.-5861; Tamilnadu, Illegible-s.n. CAL-97798; Burma : Smales, C. B. 180; Lace, H. J.-3205; Sri Lanka : R.W.293, CAL—97799. M. polyptera Miq. Sumatra : Diepenborst-2872 HB. M. simplicifolia (Roxb.) Walp. ssp. simplicifolia $[=$ M. simplicifolia (Roxb.) Walp] India : Assam, Biswas, K.P.-1461; Prazer, J. C.. s.n. (1880); s.n. CAL—97674; Seal, S.-80, 320, 361 ; Illegible No.-58, CAL—97664; Colett, H.-81; W. U, G.-10419; Burkill, I.H.-36626, 37416, 35976; Kingdonward, P.-11238; Meghalaya, Panigrahi, G.-19293; W. Bengal. Cowan, J. M. et Forest, A. C.-3; Sikkim, Smith, N. W.-607; Manipur, Meebold, A.-5579; Visakhapatnam, Balakrishnan, N. P.-723; Orissa, Nigirda, Panigrahi, G--12565 Nagaland, NIL, No.-1303, C. \L-97661; Burma : Biswas, K. P.-1023; Sri Lanka : NIL, C $A 1 .-97641$, Devidse Gerrit - 84j0; China: Wang. C. W. -77878. M. simplicifolia (Roxh.) Walp. ssp. pungens (Wall. ex W. \& A.) Beus. stat, nov. [... M pungens Wall.] India : Garhwal, King, G;-s.n. (:AI. 97613; NEAA, Kimeng, Rao, R.S. 8015 ; N11, No. 15809: NIL. No-6918; B.S.I. E. C. 15809; Pangrahi, G. 1.5809, 6918; Sikkim, K゙ing, G. 187; Raw. R. S.... 380 ; N.

Sylhet, C. B. Clarks-42172; Burma: Shalik Mokim-8; 26; Capt. SM. \& Toppin, R. H.-.4478. S. leptandra Hook. f. \& Th. India : Kalimpong, Gamble, J.S.—2694; Clarke, C.B.—26433C (Fs); Sikkim, King, G.--s.n.1881 ; King, G.-s.n. CAL—97422; Gamble, J.S.—7603; Smith, W. W.-502; Darjeeling, Lace, J. H.2457. S. limoniacea Wall. India : Tripura, D.B. Deb-27298; Mizoram, D.B. Deb-31208; Meghalaya, Khasi hills, JDH \& Th. s.n. CAL-97502; Nagaland, Dr. Prain's col. -626; W. Bengal, Haines, H. H,-506; Bangladesh : Clarke, C. B.-18005; Chittagong, Khan, M.S.-827. S. paniculata Edgew. India : Sikkim, Rubu \& Rhomoo-3610; Haincs, H.H. 502; Illcgible No.-358 (9. 1. 1876) ; King, G. s.n. (1869); Manipur, Mcebold, A.-6474; Mcebold, A.-s.n.-CAL-97520; Kurscong, Modder, E.H.C.-s.n. CAL—97518; Kumaon, Strachey, R.-2; Dehat Dun, Gamble, J.S.-24075; Mackinnon, P.W.-s.n.-CAL_ 97523; 97524; Siwalik, N.W. Himalaya, Das Parameshwar-122; Nepal: Burkil, 1.H.-.29516 (1907). S. parviflora Wall. India: Sikkim, Lister, J.L. s.n. April-1878, CAL-97446; Majumdar, N.C. et Dutta-382; King, G.-2344; King, G.-s.n. (8. 4. 1876) ; Assam, Debi valley-F. King, Downward-7990; Khasi hills, Ciollet, H.-s.n. -GAL-97439; E. Himalaya, Cave, G. H.—s.n.-CAL—561784 (19. 4. 1920); s.n.-CAL 561785 (1. 5. 1918); Bhutan : Sengupta, G.-1146; Borneo : Havilland, G.D.-1218. S. purpurea Hook. f. \& Th. India : Sikkim, S. Kurz, s.n. Herb. Sulp. Kurz. C.AL-97429; Cave, G.H. s.n.-(12.3.1916); Khasi hills, Colett, H. s.n. CAL-97436; Kalimpong, Illegible s.n. CAL-97428; Assam, Gammie, G. A.-338; Clarke, C.B.-43378A; China : Dr. Aug. Henry's Col.-5265. S. yunnanensis Franch. C. China; Dr. Aug. Henry-5421; 6290; Yunnan, Plantae Formes tianae-15711, CAL—97578; Flora of E. Tibet \& S. W. China, George Forest—4721 4707.

Meliosma buchnanaefolia Kurz. India : Khasi hills, Illegible—s.n.; CAL-97886. M. colletiana King. Burma : Badal Khan s.n. CAL—97906. M. dentata Urban, Mexico : Pringle, C. G.-6381, State of Morelos, CAL-97958. M. dilleniifolia (Wall. ex W. \& A.) Walp. ssp. dilleniifolia. [M. dilleniifolia (Wall, ex. W. \& A.) Walp.] India : Kumaon, Colett, H.-s.n. CAL-97592; Chakrata, NIL, CAL—97588; Simla, NIL, CAL97595; Bangladesh : Griffith—1027; Nepal : Puri, V.-646; Rao, R. S.-14132. M. dilleniifolia (Wall. ex W. \& A.) Walp. ssp. cuneifolia (Franch.) Beus. Stat. nov. [M. cuneifolia Franch.] China : George Forest-23037, 21346. M. dilleniifolia (Wall. ex W. \& A.) Walp. ssp. tenuis (Maxim.) Beus. stat. nov. [M. tenuis Maxim.] Japan : Prov. Senanc, Tschonoski-1864; China : Hunan, Dr. Aug. Henry's Col.-7540, 6000. M. lanceolata Bl. var. lanceolata f. lanceolata [M. lanceolata Bl.] Mal. Peninsula : Griffith—s.n. CAL—97851; NIL, CAL97854; Maingay, A.C.-361; Malacca : Ridley, H.M.—6341; Java : Forbes, H.O.--596, 1185, 1218; Singapore : Kelantan Kuala Rek, Md. Hanif et al.-10190; Ridley, H. N.-1892, 347, 3876. M. lancifolia Hook. f. Malaya : Maingay, A. C. $-463 / 2$. M. lepidota Bl. ssp. squamulata (Hance) Beus. Stat. nov. [M. squamulata Hance] China : Herb. of Lingnan Univ. Lung. T, au et shan s.n. CAL- 97937 (det.-E. D. Merrill). M. multiflora Merrill, Philippines :Luzon, Alcasid et al. 1623, 1834 (det.-E. D. Merrill); Sulit, M.D.-7470; Santos, J. K.-31783; Merrill, E.D.-1751; Curran et al.-18118, Elmer, A.D.E.-8819. M. myriantia Sieb. \& Zucc. ssp. myriantha Sieb. \& Zucc. [M. myriantha Sieb \& Zucc.] China : Hainan, Tsang Wai Tak-902; Dr. Aug. Henry's col.-5863, 5929, 5849A, 7550; Tsusima island, St. of Korea, Wilford, C.-1859, s. n. CAL-97899; Tsiang tan-365. M. nitida Blume, Mal. Peninsula : Rev. Father Scortechini-s.n. CAL—97823, C.AL97824; Dr. King's Col.-2707, 1051, 4153, 5661, 5657, Perak, Wray L. (Jr.)—3399, 4048; Maingay, A.C.-461; Penang, Curtis, C.-2836; Kunstler, H.-5301, 6944, 3260 ; Singapore : Ridley, H.N.-6342, s.n.-CAL-97872, s.n. CAL—97873. M. obtusifolia Kurg \& Urban, America : Sintenis, P.-4039, 5326 (det.-I. Urban). M. pinnata (Roxb.) Walp. ssp. pinnata [=M. pinnata Roxb.] India : Assam, Herb. of E. India Company, NIL, CAL-97746; Panigrahi, G.-9592, 9619; Mann, G.-s.n.-CAL—97750; NIL, CAL97757; Manipur, George Watt.-6916; Arunachal, Deb. D. B.-25782; Meghalaya, Rao, A.S.-38728; Sikkim, Biswas, K.-9235, King, G.-865, 187; Haines-531; Nagaland, Hook, M. A.-772; Bhutan : King, G.-187; Bangladesh : Chittagong, Dr. King's col.-443. M. pinnata (Roxb.) Walp. ssp. arnottiana var. arnottiana [M. arnottiana Wight] India : Nilgiri, Sebastine, K.M.-3173; Annamalai, Barber, C.A.-5861; Tamilnadu, Illegible-s.n. GAL-97798; Burma : Smales, C. B. 180; Lace, H. J.-3205; Sri Lanka : R.W.293, CAL—97799. M. polyptera Miq. Sumatra : Diepenborst-2872 HB. M. simplicifolia (Roxb.) Walp. ssp. simplicifolia $[=M$. simplicifolia (Roxb.) Walp] India : Assam, Biswas, K.P.-1461; Prazer, J. C.. s.n. (1880); s.n. CAL-97674; Seal, S.-80, 320, 361; Illegible No.-58, CAL-97664; Colett, H.-81; W.tt, G.-10+19; Burkill, I.H.-36626, 37416, 35976; Kingdonward, F.-11238; Meghalaya, Panigrahi, G.-19293; W. Bengal. Cowan, J. M. et Forest, A. C.--3; Sikkim, Smith, N. W.-607; Manipur, Meebold, A.-5579; Visakhapatnam, Balakrishnan, N. P.-723 ; Orissa, Nigirda, Panigrahi, G•-12565 Nagaland, NIL, No.-1303, C.JL-97661; Rurma : Biswas, K. P.-1023; Sri Lanka : NIL, CAL-97641, Devidse Gerrit-8450; China : Wang, C. W. —77878. M. simplicifolia (Roxb.) Walp. ssp. pungens (Wall. ex W. \& A.) Beus. stat. nov. [-.M. pungons Wall.] India : Garhwal, King, G.-s.n. CAL_ 97613 ; NEFA, Kameng, Rato, R. S.-. 8045 ; NIL, No.- 15804; NIL, No.-6918; B.S.I. E. G.-15809; Panigrahi, G.-15809, 6918; Sikkim, King, G.-187; Rao. R. S.-. 380 ; N.
W. Himalaya, NIL, Herb. Sulp. Kurz.; Mackinnon—s.n., CAL—97610; Kumaun, Gill, N.—575; Jaunsar div., Forester, T. W.-21; Laiq Ram-s.n.; CAL-97612 (Ref. Kanjilal flora-123). Mussoric, Robson, S.-7; Mackinnon, P. W.-s.n. May 1895. CAL-97609. M. simplicifolia (Roxb.) Walp. ssp. rigida (Sieb. \& Zucc.) Beus. stat. nov. [=M. rigida Sicb. \& Zucc.] China : Herb. Fan. Memorial Inst. of Biol. Peiping China-53349; Wang, C. W.-67495. M. wallichii Planch. India : Assam, Herb. Sulp. Kurz.233; Panigrahi, G.-16126; Meghalaya, Clarke, C.B.-44673B, 44673 J; Herb. Sulp. Kurz. s.n. CAL-97784; Sikkim, King, G.-187; Illegible-803B, CAL—97787; Darjeeling, Gamble, J.S. s.n. CAL-97789; Tamil Nadu, Shetty, B.V.-10305; Sebastine, K.M.-3173. M. wightii Planch. India : Tamil Nadu, Sebastine, K. M.-3227, 2589, 4024; Herb. Wight. Peninsular India orientalis, NIL, CAL—97827; Maharashtra, Hock, s.n. CAL—97628; Sri Lanka : Illegible s.n. CAL—97623; Cramer, L.H.—4464.

EXPLANATION OF PLATE-1. $(\times 1600)$

1-3. Sabia japonica Maxim. Fig. 1. Aperture and details of exine. Fig. 2. Optical section meridicnal and aperture profile. Fig. 3. Optical section equatorial.
4-6. S. leptandra Hook. f. \& Th. Fig. 4. Aperture and details of exine. Fig. 5. Details of exine. Fig. 6. Optical section meridional and aperture profile.
7-8. S. gracilis Hemsl. Fig. 7. Aperture and details of exine. Fig. 8. Same in the 2nd focus.
9-12. Meliosma lepidota Bl. ssp. squamulata (Hance) Beus. Fig. 9. Optical section equatorial. Fig. 10 \& 11. Details of exine. Fig. 12. Optical section meridional and aperture in profile.

EXPLANATION OF PLATE $2 .(\times 1600)$

1-3. Sabia limoniacea Wall. Figs. 1 \& 2 Aperture and details of exine. Fig. 3. Optical section meridional.
4-5. Meliosma dilleniifolia (Wall. ex W. \& A.) Walp. ssp. tennuis (Maxim) Beus. Fig. 4. Optical section meridional and aperture profile. Fig. 5. Optical Section equatorial.
6-8. M. simplicifolia (Roxh.) Walp. ssp. pungens (Wall. ex W. \& A.) Beus. Fig. 6. Aperture and details of exine. Fig. 7. Optical section meridional and aperture profile. Fig. 8. Optical section equatorial.

TEXT-FIG.-1

Aperture types in Sabiaceae (diagrammatic).

1. a. M. rigida, S. japonica ; b. M. pungens, M. tenuis ; c. M. wightii, M. dilleniifolia, M. buchnanaefolia, S. paniculata ; d. M. squamulata, S. gracilis e. M. lancifolia, M. wallichii ; f. M. nitida, M. colletiana; g. M. arnottiana, M. pungens, M. obtusifolia; h. M. simplicifolia, M. squamulata, M. polyptera; i. M. arnottiana, M. dilleniifolia, S. yunnanensis ; j. M. myriantha, S. limoniacea ; k. S. campanulata; 1. S. parviflora; m. M. wightii, S. leptandra; n. S. lanceolata.

Mondal \& Mitra-Plate 1 z

[^0]: *Paper presented at the IV Indian Gcophytological Conference, Lucknow, November 14-16, 1981.

